Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 66–77 | Cite as

Applications of melting gels

  • L. C. KleinEmail author
  • S. Kallontzi
  • L. Fabris
  • A. Jitianu
  • C. Ryan
  • M. Aparicio
  • L. Lei
  • J. P. Singer
Brief Communication: Industrial and technological applications of sol-gel and hybrid materials


Hybrid organic-inorganic gels and glasses have been studied for many years for a variety of applications. Using the sol–gel process, it is possible to prepare silica-based hybrid gels that are rigid at room temperature, but soften and flow around 110 °C. This softening behavior has been called melting, even though it is not melting in a thermodynamic sense. Instead, the ability to flow is an indication that the material is not entirely cross-linked. In fact, some melting gels show glass transition behavior at temperatures below 0 °C. However, once these so-called melting gels have been heated at around 160 °C for 24 h, they no longer show the ability to soften. With an interest in using these materials for sealing microelectronics, their physical properties have been measured. In addition, their hydrophobicity, adhesion and electrochemical response have been evaluated in corrosive environments. It is also found that melting gels have been imprinted with good fidelity, and that gold nanoparticles maintain their plasmonic resonance when dispersed in melting gels. Finally, melting gels have been deposited by electrospraying to produce a variety of textures.


Organic-inorganic hybrid gels Di-substituted siloxanes Mono-substituted siloxanes Melting gels Imprint lithography Electrospraying 



Financial support was received from NSF Award 1313544 Materials World Network-SusChEM and Ministerio de Economia y Competitividad, SPAIN (PCIN-2013-030).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jitianu A, Amatucci G, Klein LC (2008) Organic–inorganic sol-gel thick films for humidity barriers. J Mater Res 23:2084–2090CrossRefGoogle Scholar
  2. 2.
    Jitianu A, Amatucci G, Klein LC (2009) Phenyl-substituted siloxane hybrid gels that soften below 140 °C. J Am Ceram Soc 92:36–40CrossRefGoogle Scholar
  3. 3.
    Matsuda A, Matsuno Y, Tatsumisago M, Minami T (1998) Fine patterning and characterization of gel films derived from methyltriethoxysilane and tetraethoxysilane. J Am Ceram Soc 81:2849–2852CrossRefGoogle Scholar
  4. 4.
    Kuniyoshi M, Takahashi M, Tokuda Y, Yoko T (2006) Hydrolysis and polycondensation of acid-catalyzed phenyltriethoxysilane (PhTES). J Sol-Gel Sci Technol 39:175–183CrossRefGoogle Scholar
  5. 5.
    Shea KJ, Loy DA, Webster OW (1989) Aryl-bridged polysilsesquioxanes-new microporous materials. Chem Mater 1:572–574CrossRefGoogle Scholar
  6. 6.
    Katagiri K, Hasegawa K, Matsuda A, Tatsumisago M, Minami T (1998) Preparation of transparent thick films by electrophoretic sol-gel deposition using phenyltriethoxysilane-derived particles. J Am Ceram Soc 81:2501–2503CrossRefGoogle Scholar
  7. 7.
    Matsuda A, Sasaki T, Hasegawa K, Tatsumisago M, Minami T (2001) Thermal softening behavior and application to transparent thick films of poly(benzylsilsesquioxane) particles prepared by the sol–gel process. J Am Ceram Soc 84:775–780CrossRefGoogle Scholar
  8. 8.
    Masai H, Takahashi M, Tokuda Y, Yoko T (2005) Gel-melting method for preparation of organically modified siloxane low-melting glasses. J Mater Res 20:1234–1241CrossRefGoogle Scholar
  9. 9.
    Kakiuchida H, Takahashi M, Tokuda Y, Masai H, Kuniyoshi M, Yoko T (2006) Viscoelastic and structural properties of a phenyl-modified polysiloxane system with a three-dimensional structure. J Phys Chem B 110:7321–7327CrossRefGoogle Scholar
  10. 10.
    Kakiuchida H, Takahashi M, Tokuda Y, Masai H, Yoko T (2007) Effects of organic groups on structure and viscoelastic properties of organic−inorganic polysiloxane hybrid system. J Phys Chem B 111:982–988CrossRefGoogle Scholar
  11. 11.
    Klein LC, Jitianu A (2010) Organic-inorganic hybrid melting gels. J Sol-Gel Sci Technol 55:86–93CrossRefGoogle Scholar
  12. 12.
    Klein LC, Jitianu A (2014) Encapsulating battery components with melting gels. In: Ohji T, Matyas J, Manjooran NJ, Pickrell G, Jitianu A (eds) Advances in Materials Science for Environmental and Energy Technologies III. American Ceramic Society, Westerville, Ohio, p 279–286. Volume 250Google Scholar
  13. 13.
    Jitianu A, Doyle J, Amatucci G, Klein LC (2010) Methyl modified siloxane melting gels for hydrophobic films. J Sol-Gel Sci Technol 53:272–279CrossRefGoogle Scholar
  14. 14.
    Kamimura Y, Kurumada K, Asaba K, Banno H, Kambara H, Hiro M (2006) Evaluation of activation energy of viscous flow of sol–gel derived phenyl-modified silica glass. J Non-Cryst Solids 352:3175–3178CrossRefGoogle Scholar
  15. 15.
    Jitianu A, Lammers K, Arbuckle-Kiel GA, Klein LC (2011) Thermal analysis of organically modified siloxane melting gels. J Therm Anal Calor 107:1039–1045CrossRefGoogle Scholar
  16. 16.
    Klein LC, McClarren B, Jitianu A (2014) Silica-containing hybrid nanocomposite "Melting Gels". Mater Sci Forum Trans Technol 783/786:1432–1437CrossRefGoogle Scholar
  17. 17.
    Gambino L, Jitianu A, Klein LC (2012) Dielectric behavior of organically modified siloxane melting gels. J Non-Cryst Solids 358:3501–3504CrossRefGoogle Scholar
  18. 18.
    Jitianu A, Gonzalez G, Klein LC (2015) Hybrid sol–gel glasses with glass-transition temperatures below room temperature. J Am Ceram Soc 98:3673–3679CrossRefGoogle Scholar
  19. 19.
    Ikeda H, Fujino S, Kajiwara T (2011) Fabrication of micropatterns on silica glass by a room-temperature imprinting method. J Am Ceram Soc 94:2319–2322CrossRefGoogle Scholar
  20. 20.
    Fernández-Sánchez A, Cadarso VJ, Darder M, Domínguez C, Llobera A (2008) Patterning high-aspect-ratio sol–gel structures by microtransfer molding. Chem Mater 20:2662–2668CrossRefGoogle Scholar
  21. 21.
    Jitianu A, Cadars S, Zhang F, Rodriguez G, Picard Q, Aparicio M, Mosa J, Klein LC (2017) 29Si NMR and SAXS investigation of the hybrid organic–inorganic glasses obtained by consolidation of the melting gels. Dalton Trans 46:3729–3741CrossRefGoogle Scholar
  22. 22.
    Klein LC, Al-Marzoki K, Jitianu A (2017) Phase separation in melting gels. Phys Chem Glass: Eur J Glass Sci Technol B 58:142–149Google Scholar
  23. 23.
    Aparicio M, Jitianu A, Rodriguez G, Degnah A, Al-Marzoki K, Mosa J, Klein LC (2016) Corrosion protection of AISI 304 stainless steel with melting gel coatings. Electrochim Acta 202:325–332CrossRefGoogle Scholar
  24. 24.
    Aparicio M, Jitianu A, Rodriguez G, Al-Marzoki K, Jitianu M, Mosa J, Klein LC (2017) Thickness-properties synergy in organic–inorganic consolidated melting-gel coatings for protection of 304 stainless steel in NaCl solutions. Surf Coat Technol 315:426–435CrossRefGoogle Scholar
  25. 25.
    Degnah A, Rodriguez G, Jitianu A, Mosa J, Aparicio M, Klein LC (2016) Electrochemical properties of melting gel coatings. In Ohji VT, Kanakala R, Matyas J, Manjooran NJ, Wong-Ng WK (eds) Advances in Materials Science for Environmental and Energy Technologies. American Ceramic Soc., Westerville, Ohio, Volume 260Google Scholar
  26. 26.
    Aparicio M, Jitianu A, Rodriguez G, Picard Q, Mosa J, Klein LC (2018) Organic–inorganic consolidated melting-gel coatings on AZ31 magnesium alloy with remarkable corrosion resistance in NaCl solutions, submitted to Corrosion ScienceGoogle Scholar
  27. 27.
    Figueira RB, Silva CJR, Periera EV (2015) Organic-inorganic hybrid sol-gel coatings for metal corrosion protection: a review of recent progress. J Coat Technol Res 12:1–35CrossRefGoogle Scholar
  28. 28.
    Eduok U, Faye O, Szpunar J (2017) Recent developments and applications of protective silicone coatings: A review of PDMS functional materials. Progress Org Coat 111:124–163CrossRefGoogle Scholar
  29. 29.
    Hwang T, Lee HY, Kim H, Kim GT (2010) Two layered silica protective film made by a spray-and-dip coating method on 304 stainless steel. J Sol-Gel Sci Technol 55:207–212CrossRefGoogle Scholar
  30. 30.
    Nikrooz B, Zandrahimi M, Ebrahimifar H (2012) High temperature oxidation resistance and corrosion properties of dip coated silica coating by sol gel method on stainless steel. J Sol-Gel Sci Technol 63:286–293CrossRefGoogle Scholar
  31. 31.
    Hammer P, dos Santos FC, Cerrutti BM, Pulcinelli SH, Santilli CV (2012) Highly corrosion resistant siloxane-polymethyl methacrylate hybrid coatings. J Sol-Gel Sci Technol 63:266–274CrossRefGoogle Scholar
  32. 32.
    Pan X, Wu J, Ge Y, Xiao K, Luo H, Gao S, Li X (2014) Preparation and characterization of anticorrosion Ormosil sol-gel coatings for aluminum alloy. J Sol-Gel Sci Technol 72:8–20CrossRefGoogle Scholar
  33. 33.
    Wittmar A, Wittmar M, Ulrich A, Caparrotti H, Veith M (2012) Hybrid sol-gel coatings doped with transition metal ions for the protection of AA 2024-T3. J Sol-Gel Sci Technol 61:600–612CrossRefGoogle Scholar
  34. 34.
    Zaharescu M, Predoana L, Barau A, Raps D, Gammel F, Rosero-Navarro NC, Castro Y, Duran A, Aparicio M (2009) SiO2 based hybrid inorganic-organic films doped with TiO2-CeO2 nanoparticles for corrosion protection of AA2024 and Mg-AZ31B alloys. Corros Sci 51:1998–2005CrossRefGoogle Scholar
  35. 35.
    Rosero-Navarro NC, Pellice SA, Duran A, Aparicio M (2008) Effects of Ce-containing sol-gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024. Corros Sci 50:1283–1291CrossRefGoogle Scholar
  36. 36.
    Sefzadeh D, Golmoghani-Ebrahimi E (2012) Formation of Novel and crack free nanocomposites based on sol gel process for corrosion protection of copper. Surf Coat Technol 210:103–112CrossRefGoogle Scholar
  37. 37.
    Murillo-Guiterrez NV, Ansart F, Bonino J-P, Menu M-J, Gressier M (2013) Protection against corrosion of magnesium alloys with both conversion layer and sol–gel coating. Surf Coat Technol 232:606–615CrossRefGoogle Scholar
  38. 38.
    Zheludkevich M, Shchukin DG, Yasakau KA, Möhwald H, Ferreira MGS (2007) Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chem Mater 19:402–411CrossRefGoogle Scholar
  39. 39.
    Ulaeto SB, Rajan R, Pancrecious JK, Rajan TPD, Pai BC (2017) Developments in smart anticorrosive coatings with multifunctional characteristics. Prog Org Coat 111:294–314CrossRefGoogle Scholar
  40. 40.
    Jeong S, Ahn S-J, Moon J (2005) Fabrication of patterned inorganic-organic hybrid film for the optical waveguide by microfluidic lithography. J Am Ceram Soc 88:1003–1036CrossRefGoogle Scholar
  41. 41.
    Back F, Bockmeyer M, Rudigier-Voigt E, Lobmann P (2013) Hybrid polymer sol-gel material for UV-nanoimprint: Microstructure and thermal densification. J Sol-Gel Sci Technol 66:73–83CrossRefGoogle Scholar
  42. 42.
    Kim E, Xia Y, Whitesides GM (1996) Micromolding in capillaries: applications in materials science. J Am Chem Soc 118:5722–5731CrossRefGoogle Scholar
  43. 43.
    Letailleur A, Teisseire J, Chemin N, Barthel E, Søndergard E (2010) Chemorheology of sol-gel silica for the patterning of high aspect ratio structures by nanoimprint. Chem Mater 22:3143–3151CrossRefGoogle Scholar
  44. 44.
    Indrasekara S, Paladini BJ, Naczynski DJ, Starovoytov V, Moghe PV, Fabris L (2013) Dimeric gold nanoparticle assemblies as tags for SERS based cancer detection. Adv Healthc Mater 2:1370–1376CrossRefGoogle Scholar
  45. 45.
    Lunden H, Liotta A, Chateau D, Lerouge F, Chaput F, Parola S, Brannlund C, Ghadyani Z, Kildemo M, Lindgren M, Lopes C (2015) Dispersion and self-orientation of gold nanoparticles in sol–gel hybrid silica—optical transmission properties. J Mater Chem C 3:1026–1034CrossRefGoogle Scholar
  46. 46.
    Chateau D, Liotta A, Gregori D, Lerouge F, Chaput F, Desert A, Parola S (2017) Controlled surface modification of gold nanostructures with functionalized silicon polymers. J Sol-Gel Sci Technol 81:147–153CrossRefGoogle Scholar
  47. 47.
    Chateau D, Liotta A, Lunden H, Lerouge F, Chaput F, Krein D, Cooper T, Lopes C, El-Amay AAG, Lindgren M, Parola S (2016) Long distance enhancement of nonlinear optical properties using low concentration of plasmonic nanostructures in dye doped monolithic sol–gel materials. Adv Funct Mater 26:6005–6014CrossRefGoogle Scholar
  48. 48.
    Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217CrossRefGoogle Scholar
  49. 49.
    Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Piech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707CrossRefGoogle Scholar
  50. 50.
    Akilany AM, Caravana AC, Hamaly MA, Lerner KT, Thompson LB (2016) Phase transfer of citrate stabilized gold nanoparticles using nonspecifically adsorbed polymers. J Colloid Interface Sci 461:39–44CrossRefGoogle Scholar
  51. 51.
    Jaworek A, Sobczyk AT (2008) Electrospraying route to nanotechnology: an overview. J Electrost 66:197–219CrossRefGoogle Scholar
  52. 52.
    Merrill MH, Pogue WR, Baucom JN (2015) Electrospray ionization of polymers: evaporation, drop fission, and deposited particle morphology. J Micro- Nano-Manuf 3:11003–1-7Google Scholar
  53. 53.
    Shmueli Y, Shter GE, Assad O, Haick H, Sonntag P, Ricoux P, Grader GS (2012) Structural and electrical properties of single Ga/ZnO nanofibers synthesized by electrospinning. J Mater Res 27:1672–1679CrossRefGoogle Scholar
  54. 54.
    Hu HQ, Singer JP, Osuji CO (2014) Morphology development in thin films of a lamellar block copolymer deposited by electrospray. Macromolecules 47:5703–5710CrossRefGoogle Scholar
  55. 55.
    Zhou X, Xiao H, Feng J, Zhang C, Niang Y (2010) Pore structure modification of silica matrix infiltrated with paraffin as phase change material. Chem Eng Res Des 88:1013–1017CrossRefGoogle Scholar
  56. 56.
    Li Y, Chen Z, Li X, Zeng H (2011) A new surface modification method to improve the dispersity of nano-silica in organic solvents. J Sol-Gel Sci Technol 58:290–295CrossRefGoogle Scholar
  57. 57.
    Li M, Wu Z, Tan J (2012) Properties of form-stable paraffin silicon dioxide/expanded graphite phase change composites prepared by sol-gel method. Appl Energy 92:456–461CrossRefGoogle Scholar
  58. 58.
    Shi J, Wu X, Fu Z, Sun R (2015) Synthesis and thermal properties of a novel nanoencapsulated phase change material with PMMA and SiO2 as hybrid shell materials. Thermochim Acta 617:90–94CrossRefGoogle Scholar
  59. 59.
    Predoi D, Crisan O, Jitianu A, Valsangiacom MC, Raileanu M, Crisan M, Zaharescu M (2007) Iron oxide in a silica matrix prepared by the sol–gel method. Thin Solid Films 515:6319–6323CrossRefGoogle Scholar
  60. 60.
    Tiberto P, Barrera G, Celegato F, Coisson M, Cholerio A, Martino P, Pandolfi P, Allia P (2013) Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles. Eur Phys J B 173:1–6Google Scholar
  61. 61.
    Huang S-Y, Wang J-S (2017) Thermally stable conformal encapsulation material for high-power ultraviolet light-emitting diodes. Opt Eng 56:077105CrossRefGoogle Scholar
  62. 62.
    Yaacoub S, Calas-Etienne S, Jabbour J, Courson R, Tauk R, Khoury A, Mehdi A, Etienne P (2013) Synthesis of new vinyl ether functionalized silica for UV-patterning. J Sol-Gel Sci Technol 67:384–393CrossRefGoogle Scholar
  63. 63.
    Liu F, Zeng X, Lai X, Li H (2017) Synthesis and characterization of polyphenylsilsesquioxane terminated with methyl and vinyl groups low-melting glass. J Adhes Sci Technol 31:2399–2409CrossRefGoogle Scholar
  64. 64.
    Kurumada K, Ashraf KM, Matsumoto S (2014) Effects of heat treatment on various properties of organic-inorganic hybrid silica derived from phenyltriethoxysilane. Mat Chem Phys 144:132–138CrossRefGoogle Scholar
  65. 65.
    Macan J, Tadanaga K, Tatsumisago M (2010) Influence of copolymerization with alkyltrialkoxysilanes on condensation and thermal behavior of poly(phenylsilsesquioxane) particles. J Sol-Gel Sci Technol 53:31–37CrossRefGoogle Scholar
  66. 66.
    Kuniyoshi M, Takahashi M, Tokuda Y, Yoko T (2007) Thermosoftening phenyl siloxane glasses prepared via sol concentration. J Non-Cryst Solids 353:4162–4169CrossRefGoogle Scholar
  67. 67.
    Mah SK, Chung IJ (1995) Effects of dimethyldiethoxysilane addition on tetraethylorthosilicate sol-gel process. J Non-Cryst Solids 183:252–259CrossRefGoogle Scholar
  68. 68.
    Gunji T, Tozune T, Kaburaki H, Arimtsu K, Abe Y (2013) Preparation of co-polymethyl(alkoxy)siloxanes by acid-catalyzed controlled hydrolytic copolycondensation of methyl(trialkoxy)silane and tetraalkoxysilane. J Polym Sci Part A: Polym Chem 51:4732–4741CrossRefGoogle Scholar
  69. 69.
    Borovin E, Callone E, Ceccato R, Quaranta A, Dire S (2014) Adsorptive properties of sol-gel derived hybrid organic/inorganic coatings. Mat Chem Phys 147:954–962CrossRefGoogle Scholar
  70. 70.
    Kuo C-FJ, Chen J-B (2015) Study on the synthesis and application of silicone resin containing phenyl group. J Sol Gel Sci Technol 76:66–73CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. C. Klein
    • 1
    Email author
  • S. Kallontzi
    • 1
  • L. Fabris
    • 1
  • A. Jitianu
    • 2
    • 3
  • C. Ryan
    • 1
  • M. Aparicio
    • 4
  • L. Lei
    • 5
  • J. P. Singer
    • 5
  1. 1.Department of Materials Science and EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Department of Chemistry, Davis HallLehman College-CUNYBronxUSA
  3. 3.Chemistry and Biochemistry ProgramThe Graduate Center of the City University of New YorkNew YorkUSA
  4. 4.Instituto de Cerámica y Vidrio—CSICMadridSpain
  5. 5.Department of Mechanical and Aerospace EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations