Advertisement

Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 234–243 | Cite as

Investigation of RNA structure-switching aptamers in tunable sol–gel-derived materials

  • Christy Y. Hui
  • Pui Sai Lau
  • Yingfu Li
  • John D. BrennanEmail author
Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • 127 Downloads

Abstract

In recent years RNA aptamers have emerged as potential recognition elements for solid phase assays, including assays that utilize sol–gel based biohybrid materials. However, there is still very little knowledge regarding the behavior of RNA aptamers when entrapped in sol–gel-derived materials. In this work, we evaluated the performance of an adenosine triphosphate (ATP)-binding structure-switching RNA aptamer in a series of sol–gel derived materials and compared the results to those previously reported for an ATP-binding DNA aptamer. It was observed that the nature of the entrapping material is the key parameter affecting the functionality of the entrapped ATP-binding RNA aptamer, which mainly impacts its ability to remain fully hybridized to signaling DNA strands upon entrapment. We observed that those materials with a high organic content provided the best performance for entrapped RNA aptamers at early times after entrapment. However, upon aging, materials derived from sodium silicate provided the best performance. Overall, the results suggest that polar materials that do not produce alcohol are optimal for entrapment of both DNA and RNA aptamers that bind ATP.

Keywords

Sol–gel RNA aptamer Biohybrid material Biomolecule entrapment Fluorescence 

Notes

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and Pro-Lab Diagnostics Inc. for funding this work. We also thank the Canada Foundation for Innovation and the Ministry of Research and Innovation (Ontario Research Fund) for support of this work. YL holds the Canada Research Chair in Directed Evolution of Nucleic Acids. JDB holds the Canada Research Chair in Bioanalytical Chemistry and Biointerfaces.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4588_MOESM1_ESM.docx (4.6 mb)
Supplementary Information

References

  1. 1.
    Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M (1990) Mater Lett 10:1–2CrossRefGoogle Scholar
  2. 2.
    Braun S, Shtelzer S, Rappoport S, Avnir D, Ottolenghi M (1992) J Non-Cryst Solids 147-148:739–743CrossRefGoogle Scholar
  3. 3.
    Avnir D, Braun S, Lev O, Ottolenghi M (1994) Chem Mater 6:1605–1614CrossRefGoogle Scholar
  4. 4.
    Avnir D, Coradin T, Lev O, Livage J (2006) J Mater Chem 16:1013CrossRefGoogle Scholar
  5. 5.
    Brennan JD (1999) Appl Spectrosc 53:106A–121ACrossRefGoogle Scholar
  6. 6.
    Jin W, Brennan JD (2002) Analtica Chinica Acta 461:1–36CrossRefGoogle Scholar
  7. 7.
    Goring GLG, Brennan JD (2002) J Mater Chem 12:3400–3406CrossRefGoogle Scholar
  8. 8.
    Siu X, Cruz-Aguado JA, Chen Y, Zhang Z, Brook MA, Brennan JD (2005) Chem Mater 17:1174–1182CrossRefGoogle Scholar
  9. 9.
    Besanger TR, Brennan JD (2006) J Sol–Gel Sci Tech 40:209–225CrossRefGoogle Scholar
  10. 10.
    Eleftheriou NM, Brennan JD (2009) J Sol–Gel Sci Tech 50:184–193CrossRefGoogle Scholar
  11. 11.
    Jin W, Brennan JD (2002) Anal Chim Acta 461:1–36CrossRefGoogle Scholar
  12. 12.
    Tombelli S, Minunni M, Mascini M (2005) Biosens Bioelectron 20:2424–2434CrossRefGoogle Scholar
  13. 13.
    Banerjee J, Nilsen-Hamilton M (2013) J Mol Med 91:1333–1342CrossRefGoogle Scholar
  14. 14.
    Clark SL, Remcho VT (2002) Electrophoresis 23:1335–1340CrossRefGoogle Scholar
  15. 15.
    de Aguiar Ferreira C, de Barros ALB (2013) J Mol Pharm Org Process Res 1:1000105Google Scholar
  16. 16.
    Famulok M, Mayer G (2011) Acc Chem Res 44:1349–1359CrossRefGoogle Scholar
  17. 17.
    Iliuk AB, Hu L, Tao WA (2011) Anal Chem 83:4440–4452CrossRefGoogle Scholar
  18. 18.
    Lau PS, Coombes BK, Li Y (2010) Angew Chem Int Ed 49:7938–7942CrossRefGoogle Scholar
  19. 19.
    Sassanfar M, Szostak JW (1993) Nature 364:550–553CrossRefGoogle Scholar
  20. 20.
    Huizenga DE, Szostak JW (1995) Biochemistry 34:656–665CrossRefGoogle Scholar
  21. 21.
    Nutiu R, Li Y (2003) J Am Chem Soc 125:4771–4778CrossRefGoogle Scholar
  22. 22.
    Nutiu R, Li Y (2005) Angew Chem Int Ed 44:1061–1065CrossRefGoogle Scholar
  23. 23.
    Nutiu R, Mei S, Liu Z, Li Y (2004) Pure Appl Chem 76:1547–1561CrossRefGoogle Scholar
  24. 24.
    Schlosser K, Li Y (2009) Chem Biol 16:311–322CrossRefGoogle Scholar
  25. 25.
    Silverman SK (2016) Trends Biochem Sci 41:595–609CrossRefGoogle Scholar
  26. 26.
    Liu M, Chang D, Li Y (2017) Acc Chem Res 50:2273–2283CrossRefGoogle Scholar
  27. 27.
    Haranath D, Rao AV (1999) Micro Mesopor Mat 30:267–273CrossRefGoogle Scholar
  28. 28.
    Hui CY, Li Y, Brennan JD (2014) Chem Mater 26:1896–1904CrossRefGoogle Scholar
  29. 29.
    Carrasquilla C, Lau PS, Li Y, Brennan JD (2012) J Am Chem Soc 134:10998–11005CrossRefGoogle Scholar
  30. 30.
    Tucker BJ, Breaker RR (2005) Curr Opin Struct Biol 15:342–348CrossRefGoogle Scholar
  31. 31.
    McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR (2017) RNA 23:995–1011CrossRefGoogle Scholar
  32. 32.
    Carrasquilla C, Kapteyn E, Li Y, Brennan JD (2017) Angew Chem Int Ed 56:10686–10690CrossRefGoogle Scholar
  33. 33.
    Lin CH, Patel DJ (1997) Chem Biol 4:817–832CrossRefGoogle Scholar
  34. 34.
    Shen Y, Mackey G, Rupcich N, Gloster D, Chiuman W, Li Y, Brennan JD (2007) Anal Chem 79:3494–3503CrossRefGoogle Scholar
  35. 35.
    Zheng L, Brennan JD (1998) Analyst 123:1735–1744CrossRefGoogle Scholar
  36. 36.
    Flora KK, Brennan JD (2001) Chem Mater 13:4170–4179CrossRefGoogle Scholar
  37. 37.
    Rachwal PA, Fox KR (2007) Methods 43:291–301CrossRefGoogle Scholar
  38. 38.
    Rupcich N, Nutiu R, Li Y, Brennan JD (2005) Anal Chem 77:4300–4307CrossRefGoogle Scholar
  39. 39.
    Rupcich N, Chiuman W, Razvan N, Mei S, Flora KK, Li Y, Brennan JD (2006) J Am Chem Soc 128:780–790CrossRefGoogle Scholar
  40. 40.
    Gupta R, Chaudhury NK (2007) Biosens Bioelectron 22:2387–2399CrossRefGoogle Scholar
  41. 41.
    Zheng L, Reid WR, Brennan JD (1997) Anal Chem 69:3940–3949CrossRefGoogle Scholar
  42. 42.
    Brinker CJ (1988) J Non-Cryst Solids 100:31–50CrossRefGoogle Scholar
  43. 43.
    Tan B, Rankin SE (2006) J Non-Cryst Solids 352:5453–5462CrossRefGoogle Scholar
  44. 44.
    Brennan JD, Hartman JS, Ilnicki EI, Rakic M (1999) Chem Mater 11:1853–1864CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biointerfaces InstituteMcMaster UniversityHamiltonCanada
  2. 2.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations