Relevance of thermal analysis for sol–gel-derived nanomaterials

Invited Review: Characterization methods of sol-gel and hybrid materials
  • 133 Downloads

Abstract

It is well known that the first step of the sol-gel method consists in obtaining of amorphous or incipient crystallized materials that could be kept in the same state or could be transformed into vitreous or crystallized materials by adequate thermal treatments. In the present study, examples regarding the relevance of the thermal analysis methods for the characterization of the sol–gel-derived oxide systems, inorganic–organic hybrids, and composite nanomaterials are discussed. For the oxide systems, case studies regarding undoped and doped monocomponent oxides and polycomponent systems are discussed. In the case of inorganic–organic hybrids, the correlation between the type of precursors and the thermal behavior is presented. For the composite nanomaterials, examples for thermal behavior of two types of nanocomposites, namely both compositionally and structurally different, as well as inorganic–organic hybrid sol-gel nanocomposites are shown. In all studied cases, the thermal analysis methods allow obtaining important information not only on thermal behavior but also on the chemical composition of the as-prepared gels and powders. Different structural investigations methods (XRD, FTIR, and Raman) sustain the results obtained by thermal investigations.

Keywords

Thermal analysis Oxide systems Inorganic-organic hybrides Sol-gel derived nanocomposites Enhanced sol-gel derived oxides 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Geffcken W, Berger E (1943) Anti-reflective coating. German Patent 736411 (Jenaer Glasswerk Schott), Granted 6 May 1943Google Scholar
  2. 2.
    Dislich H (1971) Angew Chem Int Ed 10:363–370CrossRefGoogle Scholar
  3. 3.
    Iler RK (1979) The chemistry of silica. John Wiley and Sons, ChichesterGoogle Scholar
  4. 4.
    Livage J, Henry M, Sanchez C (1988) Prog Solid State Chem 18:259–341CrossRefGoogle Scholar
  5. 5.
    Brinker CJ, Scherrer GW (1990) Sol-gel science. The physics and chemistry of sol-gel processing. Academic Press, BostonGoogle Scholar
  6. 6.
    Pierre AC (1998) Introduction to the sol-gel process. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  7. 7.
    Guel MLA, Jiménez LD, Hernández DAC (2017) Ultrason Sonochem. 35(Pt A): 514–517Google Scholar
  8. 8.
    Pinjari DV, Prasad K, Gogate PR, Mhaske ST, Pandit AB (2015) Ultrason Sonochem 23:185–191CrossRefGoogle Scholar
  9. 9.
    Predoana L, Calderon-Moreno JM, Anastasescu M, Stoica M, Stanciu I, Preda S, Gartner M, Zaharescu M (2016) J Sol-Gel Sci Technol 78:589–599CrossRefGoogle Scholar
  10. 10.
    Wei L, Joonho L (2008) J Phys Chem C 112:11679–11684Google Scholar
  11. 11.
    ICTAC (1991) For better thermal analysis and calorimetry, 3rd ednGoogle Scholar
  12. 12.
    McNaught AD, Wilkinson A (1997) IUPAC Compendium of chemical technology. Blackwell, OxfordGoogle Scholar
  13. 13.
    Malic B, Kupec A, Kosec M (2013) Thermal analysis. In: Schneller T, Waser R, Kosec M, Payne D (eds) Chemical solution deposition of functional thin films. Springer guide to instrumental analysis. CRC Press, Boca Raton: FL, p 181–191Google Scholar
  14. 14.
    Segal E, Budrugeac P, Carp O, Doca N, Popescu C, Vlase T (2013) Analiza termicᾰ. Fundamente şi aplicaţii (in Romanian). Academiei Române, BucharestGoogle Scholar
  15. 15.
    Paulik F, Paulik J, Erdey L (1966) Talanta 13:1405–1430CrossRefGoogle Scholar
  16. 16.
    Dean JA (1995) The analytical chemistry handbook, New York, NYGoogle Scholar
  17. 17.
    Coats AW, Redfern JP (1963) Thermogravimetric analysis: a review. Analyst 88:906–924CrossRefGoogle Scholar
  18. 18.
    Pungor E (1995) A practical. Acta 114:1–13Google Scholar
  19. 19.
    Höhne GWH, Hemminger WF, Flammersheim HJ (2003) Differential scanning calorimetry. Springer Verlag Heidelberg, New York, NYCrossRefGoogle Scholar
  20. 20.
    Price D, Dollimore D, Fatemi NS, Whitehead R (1980) Thermochim Acta 42:323–332CrossRefGoogle Scholar
  21. 21.
    Barnes PA (1987) ThermochimGoogle Scholar
  22. 22.
    Brown ME (2001) Introduction to thermal analysis: techniques and applications. Springer, NetherlandsGoogle Scholar
  23. 23.
    Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) J Appl Phys 32:1679–1684CrossRefGoogle Scholar
  24. 24.
    Menard KP(1999), Dynamic Mechanical Analysis; CRC Press, Boca Raton. FloridaGoogle Scholar
  25. 25.
    Wiedemann HG, Widmann G, Bayer G (1994) Glass transition in polymers: comparison of results from DSC, TMA and TOA measurements. In: Seyler RJ (ed). Assigment of the glass transition, ASTM STP/249. American Society for Festing and Materials, PhiladelphiaGoogle Scholar
  26. 26.
    Schmidt H (1988) J Non-Cryst Solids 100:51–64CrossRefGoogle Scholar
  27. 27.
    Sakka S, Kamya K (1982) J Non-Cryst Solids 48:31–46CrossRefGoogle Scholar
  28. 28.
    Dislich H, Hinz P (1982) J Non-Cryst Solids 48:11–16CrossRefGoogle Scholar
  29. 29.
    Zaharescu M, Predoana L, Pandele-Cusu J (2018) Thermal Analysis on Gels, Glasses and Powders in Klein LC, Jitianu A, Aparicio M (eds) Powders in Handbook of Sol-Gel Science and Technology, 2nd edition, Springer,  https://doi.org/10.1007/978-3-319-19454-7_99-1
  30. 30.
    Dislich H, Eckart H (1981) Thin Solid Films 77:129–140CrossRefGoogle Scholar
  31. 31.
    Dislich H (1983) J Non-Cryst Solids 57:371–388CrossRefGoogle Scholar
  32. 32.
    Zarzycki J (1982) J Non-Cryst Solids 48:105–116CrossRefGoogle Scholar
  33. 33.
    Nogami M, Moriya Y (1980) J Non-Cryst Solids 37:191–201CrossRefGoogle Scholar
  34. 34.
    Klein LC, Garvey GJ (1982) J Non-Cryst Solids 48:97–104CrossRefGoogle Scholar
  35. 35.
    Klein LC, Gallo TA, Garvey GJ (1984) J Non-Cryst Solids 63:23–33CrossRefGoogle Scholar
  36. 36.
    Brinker CJ, Keefer KD, Schaffer DW, Ashley C (1982) J Non-Cryst Solids 42:47–64CrossRefGoogle Scholar
  37. 37.
    Brinker CJ, Scherrer GW (1985) J Non-Cryst Solids 70:301–322CrossRefGoogle Scholar
  38. 38.
    Zarzycki J, Prassas M, Phalippou J (1982) J Mater Sci 17:3371–3379CrossRefGoogle Scholar
  39. 39.
    Yoldas BE (1979) Mater J Sci 14:1843–1849CrossRefGoogle Scholar
  40. 40.
    Nogami M, Moriya Y (1982) J Non-Cryst Solids 48:359–366CrossRefGoogle Scholar
  41. 41.
    Villegas MA, Fernandez Navarro JM (1988) J Mater Sci 23:2464–2478CrossRefGoogle Scholar
  42. 42.
    Ranganathan V, Klein LC (2008) J Non-Cryst Solids 354:3567–3571CrossRefGoogle Scholar
  43. 43.
    Raileanu M, Todan L, Crisan M, Braileanu A, Rusu A, Bradu C, Carpov A (2010) J Environ Prot 1:302–313CrossRefGoogle Scholar
  44. 44.
    Anastasescu C, Anastasescu M, Teodorescu VS, Gartner M, Zaharescu M (2010) J Non-Cryst Solids 356:2634–2640CrossRefGoogle Scholar
  45. 45.
    Nakamura H, Matsui Y (1995) J Am Chem Soc 117:2651–2652CrossRefGoogle Scholar
  46. 46.
    Anastasescu C, Zaharescu M, Balint I (2009) Catal Lett 132:81–86CrossRefGoogle Scholar
  47. 47.
    Anastasescu C, Anastasescu M, Zaharescu M, Balint I (2012) J Nanopart Res 14:1198CrossRefGoogle Scholar
  48. 48.
    Crisan M, Jitianu A, Crisan D, Balasoiu M, Dragan N, Zaharescu M (2000) J Optoelectron Adv Mater 2:339–344Google Scholar
  49. 49.
    Yoldas BE (1975) J Mater Sci 10:1856–1860CrossRefGoogle Scholar
  50. 50.
    Chappell JS, Procopio LJ, Birchall JD (1990) J Mater Sci Lett 9:1329–1331CrossRefGoogle Scholar
  51. 51.
    Tahir M, Amin NAS (2013) Energy Convers Manag 76:194–214CrossRefGoogle Scholar
  52. 52.
    O’Regan B, Gratzel M (1991) Nature 353:737–740CrossRefGoogle Scholar
  53. 53.
    Dumbrava A, Georgescu A, Damache G, Badea C, Enache I, Oprea C, Gartu MA (2008) J Optoelectron Adv Mater 10:2996–3002Google Scholar
  54. 54.
    Wei X, Yang Z, Tay SL, Gao W (2014) Appl Surf Sci 290:274–279CrossRefGoogle Scholar
  55. 55.
    Akpan UG, Hameed BH (2010) Appl Catal A 375:1–11CrossRefGoogle Scholar
  56. 56.
    Stanciu I, Predoana L, Anastasescu C, Culita DC, Preda S, Pandele Cusu J, Munteanu C, Rusu A, Balint I, Zaharescu M (2014) Rev Roum Chim 59:919–929Google Scholar
  57. 57.
    Crisan M, Raileanu M, Dragan N, Crisan D, Ianculescu A, Nitoi I, Oancea P, Somacescu S, Stanica N, Vasile B, Stan C (2015) Appl Catal A 504:130–142CrossRefGoogle Scholar
  58. 58.
    Dragan N, Crisan M, Raileanu M, Crisan D, Ianculescu A, Oancea P, Somacescu S, Todan L, Stanica N, Vasile B (2014) Ceram Int 40:12273–12284CrossRefGoogle Scholar
  59. 59.
    Crisan D, Dragan N, Raileanu M, Crisan M, Ianculescu A, Luca D, Nastut A, Mardare D (2011) Appl Surf Sci 257:4227–4231CrossRefGoogle Scholar
  60. 60.
    Jeon H, Min YJ, Ahn SH, Hong SM, Shin JS, Kim JH, Lee KB (2012) Colloid Surf A 414:75–81CrossRefGoogle Scholar
  61. 61.
    Lopez T, Ventura HJ, Aguilar HD, Quintana P (2008) J Nanosci Nanotechnol 8:6608–6617CrossRefGoogle Scholar
  62. 62.
    Todan L, Dascalescu T, Preda S, Andronescu C, Munteanu C, Culita DC, Rusu A, State R, Zaharescu M (2014) Ceram Int 40:15693–15701CrossRefGoogle Scholar
  63. 63.
    Muralt P (2000) J Micromech Microeng 10:136–146CrossRefGoogle Scholar
  64. 64.
    Scott JF (2007) Science 315:954–959CrossRefGoogle Scholar
  65. 65.
    Roedel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovi D (2009) J Am Ceram Soc 92:1153–1177CrossRefGoogle Scholar
  66. 66.
    Egerton L, Dillon DM (1959) J Am Ceram Soc 42:438–442CrossRefGoogle Scholar
  67. 67.
    Zhang S, Xia R, Shrout TR (2007) J Electroceram 19:251–257CrossRefGoogle Scholar
  68. 68.
    Kupec A, Mocioiu OC, Cilenšek J, Zaharescu M, Malič B (2014) Acta Chim Slov 61:548–554Google Scholar
  69. 69.
    Mihaiu S, Szilagyi IM, Atkinson I, Mocioiu OC, Hunyadi D, Pandele-Cusu J, Toader A, Munteanu C, Boyadjiev S, Madarasz J, Pokol G, Zaharescu M (2016) J Therm Anal Calorim 124:71–80CrossRefGoogle Scholar
  70. 70.
    Predoana L, Jitianu A, Preda S, Malic B, Zaharescu M (2015) J Therm Anal Calorim 119:145–153CrossRefGoogle Scholar
  71. 71.
    Predoana L, Malic B, Zaharescu M (2009) J Therm Anal Calorim 98:361–366CrossRefGoogle Scholar
  72. 72.
    Sanchez C, Ribot F (1994) New J Chem 18:1007–1047Google Scholar
  73. 73.
    Phani AR, Gammel FJ, Hack T, Haefke H (2005) Mater Corros 56:77–82CrossRefGoogle Scholar
  74. 74.
    Zandi-Zand R, Ershad-langroudi A, Rahimi A (2005) J Non-Cryst Solids 351:1307–1311CrossRefGoogle Scholar
  75. 75.
    Shen GX, Chen YC, Lin L, Lin CJ, Scantlebury D (2005) Electrochim Acta 50:5083–5089CrossRefGoogle Scholar
  76. 76.
    Gallardo J, Duran A, De Damborenea JJ (2004) Corros Sci 46:795–806CrossRefGoogle Scholar
  77. 77.
    Pepe A, Aparicio M, Cere S, Duran A (2004) J Non-Cryst Solids 348:162–171CrossRefGoogle Scholar
  78. 78.
    Fedrizzi L, Rodriguez FJ, Rossi S, Deflorian F, Di Maggio R (2001) Electrochim Acta 46:3715–3724CrossRefGoogle Scholar
  79. 79.
    Kumar N, Jyothirmayi A, Soma Raju KRC, Subasri R (2012) Ceram Int 38:6565–6572CrossRefGoogle Scholar
  80. 80.
    Mekeridis ED, Kartsonakis IA, Kordas G (2012) C Prog Org Coat 73:142–148CrossRefGoogle Scholar
  81. 81.
    Wittmar A, Wittmar M, Caparrotti H, Veith M (2011) J Sol-Gel Sci Technol 59:621–628CrossRefGoogle Scholar
  82. 82.
    Wittmar A, Wittmar M, Ulrich A, Caparrotti H, Veith M (2012) J Sol-Gel Sci Technol 61:600–612CrossRefGoogle Scholar
  83. 83.
    Dislich H (1963) DAS Patent 12 84 067Google Scholar
  84. 84.
    Litner B (1988) J Non-Cryst Solids 100:378–382CrossRefGoogle Scholar
  85. 85.
    Kamiya K, Yoko T, Tanaka K, Takeuchi M (1990) J Non-Cryst Solids 121:182–187CrossRefGoogle Scholar
  86. 86.
    Matsuda A, Matsuno Y, Tatsumisago M, Minami T (1998) J Am Ceram Soc 81:2849–2852CrossRefGoogle Scholar
  87. 87.
    Suyal N, Hoebbel D, Menning Mand Schmidt H (1999) J Mater Chem 9:3061–3067CrossRefGoogle Scholar
  88. 88.
    Zaharescu M, Jitianu A, Brãileanu A, Badescu V, Pokol G, Madarász J, Novák Cs (1999) J Therm Anal Calorim 56:191–198CrossRefGoogle Scholar
  89. 89.
    Zaharescu M, Jitianu A, Brãileanu A, Madarász Jand Pokol G (2001) J Therm Anal Calorim 64:689–696CrossRefGoogle Scholar
  90. 90.
    Jitianu A, Gonzalez G, Klein LC (2015) J Am Ceram Soc 98:3673–3679CrossRefGoogle Scholar
  91. 91.
    Jitianu A, Lammers K, Georgia A, Arbuckle-Kiel LisaC (2012) J Therm Anal Calorim 107:1039–1045CrossRefGoogle Scholar
  92. 92.
    Newnham RE, Skinner DP, Cross LE (1978) Mater Res Bull 13:525–536CrossRefGoogle Scholar
  93. 93.
    Komarneni S (1992) J Mater Chem 2:1219–1230CrossRefGoogle Scholar
  94. 94.
    Avnir D, Klein LC, Levy D, Shubert U, Wojcik AB (1998) The chemistry of organic silicon, vol. 2, chap. 40, Organo-silica sol-gel materials, John Wiley & Sons Ltd, pp 2317–2362Google Scholar
  95. 95.
    Zaharescu M (2015) Oxide and hybride nanocomposits obtiane by sol-gel method, In: Chitanu GC, Simionescu B (eds)Micro- and nanoaplications of polymers and polymer-based hybride materials. Academiei Române, Bucharest, pp 17–41Google Scholar
  96. 96.
    Yoshio T, Kawaguchi C, Kanamaru F, Takahashi K (1981) J Non-Cryst Solids 43:129CrossRefGoogle Scholar
  97. 97.
    Lopez T, Mendez J, Zamudio T, Villa M (1992) Mater Chem Phys 30:161CrossRefGoogle Scholar
  98. 98.
    Lopez T, Mendez-Vivar J, Asmoza M (1993) Thermochim Acta 216:279CrossRefGoogle Scholar
  99. 99.
    Zaharescu M, Crisan M, Jitianu A, Crisan D, Meghea A, Rau I (2000) J Sol-Gel Sci Technol 19:631–635CrossRefGoogle Scholar
  100. 100.
    Jitianu A, Crisan M, Meghea A, Rau I, Zaharescu M (2002) J Mater Chem A 12:1401–1407CrossRefGoogle Scholar
  101. 101.
    Jitianu A, Răileanu M, Crişan M, Predoi D, Jitianu M, Stanciu L, Zaharescu M (2006) J Sol-Gel Sci Technol 40:317–323CrossRefGoogle Scholar
  102. 102.
    Predoana L, Gartner M, Teodorescu VS, Nicolescu M, Anastasescu M, Zaharescu M (2013) Rev Roum Chim 58:239–249Google Scholar
  103. 103.
    Zaharescu M, Wittmar A, Teodorescu V, Andronescu C, Wittmar M, Veith M (2009) Z Anorg Allg Chem 635:1915–1924CrossRefGoogle Scholar
  104. 104.
    Kappe CO, Pieber B, Dallinger D (2013) Angew Chem Int Ed 52:1088–1094CrossRefGoogle Scholar
  105. 105.
    Dudley GB, Richert R, Stiegman AE (2015) Chem Sci 6:2144–2152CrossRefGoogle Scholar
  106. 106.
    Das S, Mukhopadhyay AK, Datta S, Basu D (2009) B Mater Sci 32:1–13CrossRefGoogle Scholar
  107. 107.
    Leonelli C, Lojkowski W (2013) Chem Today 25:34–38Google Scholar
  108. 108.
    Kharade RR, Patil KR, Patil PS, Bhosale PN (2012) 47:1787–1793Google Scholar
  109. 109.
    Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Angew Chem Int Ed 50:11312–11359CrossRefGoogle Scholar
  110. 110.
    Zhu YJ, Chen F (2014) Chem Rev 114:6462–6555CrossRefGoogle Scholar
  111. 111.
    Khan NH, Agrawal S, Kureshy RI, Abdi SHR, Prathap KJ, Jasra RV (2008) Eur J Org Chem 2008:4511–4515CrossRefGoogle Scholar
  112. 112.
    Stanciu I, Predoana Cusu J, Preda S, Anastasescu M, Vojisavljević K, Malič B, Zaharescu M (2017) J Therm Anal Calorim 130:639–651CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.“Ilie Murgulescu” Institute of Physical ChemistryBucharestRomania

Personalised recommendations