Advertisement

Fabrication of filter paper with tunable wettability and its application in oil–water separation

  • 553 Accesses

  • 12 Citations

Abstract

Artificial materials with controllable wettability are of global interests in oil–water related applications. In the present report, a surface with superhydrophilicity/superoleophilicity and underwater superoleophobicity was constructed on filter paper via dip-coating ZnO colloids. However, the wettability of the filter paper was converted to be superhydrophobic and superoleophilic after being modified by octyltrimethoxysilane, and water contact angle on the surface is larger than 150° while oil contact angle is smaller than 5°. The filter paper can be employed to selectively adsorb oil floating on water or separate water–oil mixtures via filtration process because of its superhydrophobicity and superoleophilicity. Additionally, the filter paper has also the capacity to hold water, which is expected to be used as a material for manufacturing labwares.

Graphical Abstract

A filter paper with superhydrophobicity and superoleophilicity was fabricated by dip-coating and subsequent modification. Water contact angle and sliding angle on the filter paper are 157°and 6°, respectively. The filter paper with superhydrophobicity and superoleophilicity could be employed to separate oil–water mixture with high efficiency.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Wang C-F, Tzeng F-S, Chen H-G, Chang C-J (2012) Langmuir 28:10015–10019

  2. 2.

    Kobaku SPR, Kota AK, Lee DH, Mabry JM, Tuteja A (2012) Patterned superomniphobic–superomniphilic surfaces: templates for site-selective self-assembly. Angew Chem Int Ed 51:10109–10113

  3. 3.

    Wang B, Liang W, Guo Z, Liu W (2015) Chem Soc Rev 44:336–361

  4. 4.

    Chu Z, Feng Y, Seeger S (2014) Angew Chem Int Ed 53:2–13

  5. 5.

    Tian Y, Bin S, Jiang L (2014) Adv Mater 26:6872–6897

  6. 6.

    Yao X, Song Y, Jiang L (2011) Adv Mater 23:719–734

  7. 7.

    Wang F, Lei S, Xue M, Junfei O, Li W (2014) Langmuir 30:1281–1289

  8. 8.

    Yang J, Zhang Z, Xianghui X, Zhu X, Men X, Zhou X (2012) J Mater Chem 22:2834–2837

  9. 9.

    Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L (2013) Adv Mater 25:4192–4198

  10. 10.

    Zhou X, Zhang Z, Xianghui X, Guo F, Men X, Ge B (2013) ACS Appl Mater Interfaces 5:7208–7214

  11. 11.

    Zhou X, Zhang Z, Xianghui X, Men X, Zhu X (2013) Ind Eng Chem Res 52:9411–9416

  12. 12.

    Zeng J, Guo Z (2014) Sol-Gel Surf A Physicochem Eng Asp 444:283–288

  13. 13.

    Wang S, Li M, Lu Q (2010) ACS Appl Mater Interfaces 2:677–683

  14. 14.

    Chuan D, Wang J, Chen Z, Chen D (2014) Appl Surf Sci 313:304–310

  15. 15.

    Jin C, Yan R, Huang J (2011) J Mater Chem 21:17519–17525

  16. 16.

    Huang J, Yuanqing G (2011) Curr Opin Colloid Interface Sci 16:470–481

  17. 17.

    Li S, Wei Y, Huang J (2010) Chem Lett 39:20–21

  18. 18.

    Obeso CG, Sousa MP, Song W, Rodriguez-Pérez MA, Bhushan B, Mano JF (2013) Sol-Gel Surf A Physicochem Eng Asp 416:51–55

  19. 19.

    Ogihara H, Xie J, Saji T (2013) Sol–Gel Surf A Physicochem Eng Asp 434:35–41

  20. 20.

    Sousa MP, Mano JF (2013) ACS Appl Mater Interfaces 5:3731–3737

  21. 21.

    Mates JE, Schutzius TM, Bayer IS, Qin J, Waldroup DE, Megaridis CM (2014) Ind Eng Chem Res 53:222–227

  22. 22.

    Wang ZL (2004) J Phys: Condens Matter 16:R829–R858

  23. 23.

    Spanhel L, Anderson MA (1991) J Am Chem Soc 113:2826–2833

  24. 24.

    Chu Z, Seeger S (2014) Chem Soc Rev 43:2784–2798

  25. 25.

    Teisala H, Tuominen M, Kuusipalo J (2014) Adv Mater Interfaces 1:1300026 (1–20)

  26. 26.

    Bixler GD, Bhushan B (2013) Nanoscale 5:7685–7710

  27. 27.

    Teng C, Lu X, Ren G, Zhu Y, Wan M, Jiang L (2014) Adv Mater Interfaces 1:1400099(1–5)

  28. 28.

    Liu Q, Patel AA, Liu L (2014) ACS Appl Mater Interfaces 6:8996–9003

  29. 29.

    Raza A, Ding B, Zainab G, El-Newehy M, Al-Deyab SS, Yu J (2014) J Mater Chem A 2:10137–10145

  30. 30.

    Nicolas M, Guittard F, Géribaldi S (2006) Angew Chem Int Ed 45:2251–2254

  31. 31.

    Liu M, Jiang L (2010) Adv Funct Mater 20:3753–3764

  32. 32.

    Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L (2011) Adv Mater 23:4270–4273

  33. 33.

    Jin X, Shi B, Zheng L, Pei X, Zhang X, Sun Z, Du Y, Kim JH, Wang X, Dou S, Liu K, Jiang L (2014) Adv Funct Mater 24:2721–2726

  34. 34.

    Bhushan B, Jung YC (2011) Prog Mater Sci 56:1–108

  35. 35.

    Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546–551

  36. 36.

    Schrader ME (1995) Langmuir 11:3585–3589

  37. 37.

    Xiu Y, Zhu L, Hess DW, Wong CP (2008) J Phys Chem C 112:11403–11407

  38. 38.

    Kim J, Kim EK, Kim SS (2013) J Colloid Interface Sci 392:376–381

  39. 39.

    Tsujii K, Yamamoto T, Onda T, Shibuichi S (1997) Angew Chem Int Ed 36:1101–1102

  40. 40.

    Meng H, Wang S, Xi J, Tang Z, Jiang L (2008) J Phys Chem C 112:11454–11458

  41. 41.

    Quéré D (2002) Phys A Stat Mech Appl 313:32–46

Download references

Acknowledgments

The authors sincerely acknowledge the financial support to this project from Nature Science Foundation of China (20873101), the General Program of the Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities (Grant No. ZX1406) and the President Fund of Hexi University (Grant No. XZ201304).

Author information

Correspondence to Yanlong Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 9012 kb)

Supplementary material 1 (AVI 9012 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Shi, Y., Liu, J. et al. Fabrication of filter paper with tunable wettability and its application in oil–water separation. J Sol-Gel Sci Technol 76, 129–137 (2015). https://doi.org/10.1007/s10971-015-3759-4

Download citation

Keywords

  • Superhydrophobic
  • Superoleophilic
  • ZnO colloids
  • Filter paper
  • Oil/water separation