Anti-icing performance of transparent and superhydrophobic surface under wind action

  • 753 Accesses

  • 10 Citations


In this work, we demonstrated the anti-icing properties of a transparent and superhydrophobic coating surface based on the octadecyltrichlorosilane-modified silica nanoparticles. The surface was prepared via a simple condensation polymerization followed by a spray-coating process. The surface exhibited a high contact angle of 157.5° and a low sliding angle of 6.5° at ambient temperature. The icing behavior of the surface was investigated by successively dropping the 0 °C of water droplets onto the superhydrophobic coating surface at various low temperatures, i.e., –5, –10 and –15 °C with the help of wind action. The surface displayed excellent anti-icing properties at –5 and –10 °C. Water droplets bounced off or slid away the surface before freezing under wind action at the above temperatures. The icing delay time is larger than 2500 s at –10 °C and 5 m/s of wind blow. While at even lower temperature of –15 °C, water froze on the surface quickly. The icing and/or anti-icing mechanisms of the superhydrophobic surface at different temperatures were interpreted by the variation of the surface wettabilities with decreasing temperatures. Specifically, the humidity in air condensed and consequently formed a layer of frost covering the superhydrophobic surface, which has significant influence on the moving abilities of the surface water droplets. As a result, the anti-icing properties of the coating surface changed with the decreasing of temperatures.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Bhushan B, Jung YC (2011) Prog Mater Sci 56:1–108

  2. 2.

    Ganesh VA, Raut HK, Nair AS, Ramakrishna SJ (2011) Mater Chem 21:16304–16322

  3. 3.

    Sun TL, Qing GY, Su BL, Jiang L (2011) Chem Soc Rev 40:2909–2921

  4. 4.

    Neinhuis C, Koch K, Barthlott W (2011) Planta 213:427–434

  5. 5.

    Wang YY, Xue J, Wang QJ, Chen QM, Ding JF (2013) ACS Appl Mater Interfaces 5:3370–3381

  6. 6.

    Wen XF, Wang K, Pi PH, Yang JX, Cai ZQ, Zhang LJ, Qian Y, Yang ZR, Zheng DF, Cheng J (2011) Appl Surf Sci 258:991–998

  7. 7.

    Davis A, Yeong YH, Steele A, Bayer IS, Loth E (2014) ACS Appl Mater Interfaces 6:9272–9279

  8. 8.

    Bahadur V, Mishchenko L, Hatton B, Taylor JA, Aizenberg J, Krupenkin T (2011) Langmuir 27:14143–14150

  9. 9.

    Jin CF, Yan RS, Huang JG (2011) J Mater Chem 21:17519–17525

  10. 10.

    Jin CF, Jiang YF, Niu T, Huang JG (2012) J Mater Chem 22:12562–12576

  11. 11.

    Li SJ, Wei YQ, Huang JG (2010) Chem Lett 39:20–21

  12. 12.

    Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J (2010) ACS Nano 4:7699–7707

  13. 13.

    Guo P, Wen MX, Wang L, Zheng YM (2014) Nanoscale 6:3917–3920

  14. 14.

    Oberli L, Caruso D, Hall C, Fabretto M, Murphy PJ, Evans DC (2014) Adv Colloid Interface Sci 210:47–57

  15. 15.

    Lee YW, Yu KY, Lee JK (2010) Langmuir 26:14110–14130

  16. 16.

    Wang FJ, Lei S, Xue MS, Ou JF, Li CQ, Li W (2014) J Phys Chem C 118:6344–6351

  17. 17.

    Cao LL, Jones AK, Sikka VK, Wu JZ, Gao D (2009) Langmuir 25:12444–12448

  18. 18.

    Wen MX, Lei L, Zhang MQ, Jiang L, Zheng YM (2014) ACS Appl. Mater. Interfaces 6:3963–3968

  19. 19.

    Yang J, Li W (2013) J Alloy Compd 576:215–219

  20. 20.

    Zhang YF, Yu XQ, Wu H, Wu J (2012) Appl Surf Sci 2012(258):8253–8257

  21. 21.

    Boinovich L, Emelyanenko AM, Korolev VV, Pashinin AS (2014) Langmuir 30:1659–1668

  22. 22.

    Kulinich SA, Farzaneh M (2011) Cold Reg Sci Technol 65:60–64

  23. 23.

    Kulinich SA, Farzaneh M (2009) Appl Surf Sci 255:8153–8157

  24. 24.

    Li XY, Yang BB, Zhang YQ, Gu GT, Li MM, Mao LQ (2014) J Sol-Gel Sci Technol 69:441–447

  25. 25.

    Zhang ZJ, Jiang XH, Sun CX, Hu JL, Huang HZ (2012) IEEE Trans Dielectr Electr Insul 19:1070–9878

  26. 26.

    Tarquini S, Antonini C, Amirfazli A, Marengo M, Palacios J (2014) Cold Reg Sci Technol 100:50–58

  27. 27.

    Li J, Wan HQ, Ye YP, Zhou HD, Chen JM (2012) Appl Surf Sci 261:470–472

  28. 28.

    Wang SD, Luo SS (2012) Appl Surf Sci 258:5443–5450

  29. 29.

    Mahadik SA, Mahadik DB, Kavale MS, Parale VG, Wagh PB, Barshilia HC, Gupta SC, Hegde ND, Rao AV (2012) J Sol-Gel Sci Technol 63:580–586

  30. 30.

    Hou WX, Wang QH (2009) J Colloid Interf Sci 333:400–403

  31. 31.

    Isimjan TT, Wang TY, Rohani S (2012) Chem Eng J 210:182–187

  32. 32.

    Xu L, Karunakaran RG, Guo J, Yang S (2012) ACS Appl Mater Interfaces 4:1118–1125

  33. 33.

    Yang H, Zhang XJ, Cai ZQ, Pi PH, Zheng DF, Wen XF, Cheng J, Yang ZR (2011) Surf Coat Tech 205:5387–5393

  34. 34.

    Yang HW, Cheng YR, Xiao F (2011) Appl Surf Sci 258:1572–1580

  35. 35.

    Rykaczewski K, Anand S, Subramanyam SB, Varanasi KK (2013) Langmuir 29:5230–5238

  36. 36.

    Kulinich SA, Farhadi S, Nose K, Du XW (2011) Langmuir 27:25–29

  37. 37.

    Feng J, Qin ZQ, Yao SH (2012) Langmuir 28:6067–6075

  38. 38.

    Boreyko JB, Chen CH (2009) Phys Rev Lett 103:184501-1–184501-4

Download references


The authors acknowledge the financial support by the National Natural Science Foundation of China (Grant No. 51263018), International S&T Cooperation Program of China (Grant No. 2012DFA51200), Science and Technology Supporting Plan of Jiangxi Province, Social Development Field (Grant Nos. 20122BBG70165) and Industrial Field (20133BBE50007), and the Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province (Grant No. JW201423002).

Author information

Correspondence to Fajun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Preparation of transparent and superhydrophobic coating surface on a glass bottle surface via a simple spray-coating method. (AVI 1982 kb)

Movie S1

Preparation of transparent and superhydrophobic coating surface on a glass bottle surface via a simple spray-coating method. (AVI 1982 kb)

Movie S2

Water droplets impinging on the superhydrophobic coating surface at different temperature under wind action. (AVI 3570 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yu, S., Ou, J. et al. Anti-icing performance of transparent and superhydrophobic surface under wind action. J Sol-Gel Sci Technol 75, 625–634 (2015) doi:10.1007/s10971-015-3733-1

Download citation


  • Transparent
  • Superhydrophobic surface
  • Coating
  • Anti-icing
  • Silica nanoparticles