Journal of Sol-Gel Science and Technology

, Volume 66, Issue 2, pp 330–336 | Cite as

Synthesis and electrocatalytic properties of microsized Ag2WO4 and nanoscaled MWO4 (M=Co, Mn)

  • Lu PanEmail author
  • Li Li
  • Yonghong Chen


Microstructured Ag2WO4 with shuttle-like shape was synthesized via a precipitation process with assistance of Arabic gum. MWO4 (M=Co and Mn) nanocrystals were prepared facilely via a hydrothermal procedure. The as-prepared samples were identified and characterized by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy, respectively. The resultant samples were used directly as electrocatalysts modified on a glassy carbon electrode for p-nitrophenol, K2CrO4 and H2O2 reduction in a basic solution. The results showed that all peak currents increased markedly but the corresponding peak potential decreased by using CoWO4, MnWO4 and Ag2WO4 in turn by comparing to a bare glassy carbon electrode, and Ag2WO4, CoWO4 and MnWO4 exhibited enhanced electrocatalytic activity for p-nitrophenol reduction. Ag2WO4 also showed effective electrocatalytic activity for K2CrO4 and H2O2 reduction, but both CoWO4 and MnWO4 almost displayed very weak electrocatalytic properties for K2CrO4 and H2O2 reduction in basic solution.


Ag2WO4 CoWO4 MnWO4 Electrocatalysis p-Nitrophenol 


  1. 1.
    Yu S-H, Liu B, Mo M-S, Huang J-H, Liu X-M, Qian Y-T (2003) General synthesis of sing-crystal tungstate nanorods/nnaowires: a facile, low-temperature solution aprroach. Adv Funct Mater 13:639–647CrossRefGoogle Scholar
  2. 2.
    Heyer O, Hollmann N, Klassen I, Jodlauk S, Bohatý L, Becker P, Amydosh J, Lorenz T, Khomskii D (2006) A new multiferroic material: MnWO4. J Phys Condens Matter 18:L471–L475CrossRefGoogle Scholar
  3. 3.
    Zhou Y-X, Yao H-B, Zhang Q, Gong J-Y, Liu S-J, Yu S-H (2009) Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties. Inorg Chem 48(3):1082–1090CrossRefGoogle Scholar
  4. 4.
    Song XC, Yang E, Ma R, Chen HF, Zhao Y (2008) Sodium dodecyl sulfate-assisted synthesis of CoWO4 nanorods. J Nanopart Res 10:709–713CrossRefGoogle Scholar
  5. 5.
    Song Z, Ma J, Sun H, Wang W, Sun Y, Sun L, Liu Z, Gao C (2009) Synthesis of NiWO4 nano-particles in low-temperature molten salt medium. Ceram Int 35(7):2675–2678CrossRefGoogle Scholar
  6. 6.
    Jovanović DJ, Validžić IL, Mitrić M, Nedeljković JM (2012) Synthesis and structural characterization of nano-sized copper tungstate particles. Acta Chim Slov 59:70–74Google Scholar
  7. 7.
    Ryu JH, Lim CS, Auh KH (2003) ynthesis of ZnWO4 nanocrystalline powders, by the polymerized complex method. Mater Lett 57:1550–1554CrossRefGoogle Scholar
  8. 8.
    Wang Y, Ma J, Tao J, Zhu X, Zhou J, Zhao Z, Xie L, Tian H (2006) Hydrothermal synthesis and characterization of CdWO4 nanorods. J Am Ceram Soc 89:2980–2982Google Scholar
  9. 9.
    Jia R-P, Ou-Yang C-F, Li Y-S, Yang J-H, Xia W (2008) Preparation and optical properties of HgWO4 nanorods by hydrothermal method coupled with ultrasonic technique. J Nanopart Res 10:215–219CrossRefGoogle Scholar
  10. 10.
    Mormann TJ, Jeitschko W (2000) Mercury (I) molybdates and tungstates: Hg2WO4 and two modifications of Hg2MoO4. Inorg Chem 39(19):4219–4223CrossRefGoogle Scholar
  11. 11.
    George T, Joseph S, Mathew S (2005) Synthesis and characterization of nanophased silver tungstate. Pramana J Phys 65(5):793–799CrossRefGoogle Scholar
  12. 12.
    Ejima T, Banse T, Takatsuka H, Kondo Y, Ishino M, Kimura N, Watanabe M, Matsubara I (2006) Microscopic optical and photoelectron measurements of MWO4 (M=Mn, Fe, and Ni). J Lumin 119–120:59–63CrossRefGoogle Scholar
  13. 13.
    Itoh M, Katagiri T, Aoki T, Fujita M (2006) Photo-stimulated luminescence and photo-induced infrared absorption in ZnWO4. Radiat Meas 42:545–548CrossRefGoogle Scholar
  14. 14.
    Lin J, Liu J, Zhu Y (2007) Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance. Inorg Chem 46:8372–8378CrossRefGoogle Scholar
  15. 15.
    Shang H, Wang Y, Milbrath B, Bliss M, Cao G (2006) Doping effects in anostructured cadmium tungstate scintillation films. J Lumin 121:527–534CrossRefGoogle Scholar
  16. 16.
    Damián MA, Rodriguez Y, Solis JL, Estrada W (2003) Characterization and butanolyethanol sensing properties of mixed tungsten oxide and copper tungstate films obtained by spray–sol–gel. Thin Solid Films 444:104–110CrossRefGoogle Scholar
  17. 17.
    Suthanthiraraj SA, Premchand YD (2004) An experimental investigation of ionic transport properties in CuI–Ag2WO4 and CuI–Ag2CrO4 mixed systems. J Solid State Chem 177:4126–4135CrossRefGoogle Scholar
  18. 18.
    Suthanthiraraj SA, Sarojini S (2012) Ionic transport and surface morphological studies on SbI3–Ag2WO4 mixed system for solid state battery applications. Chem Sci Trans 1(1):13–22CrossRefGoogle Scholar
  19. 19.
    Zhang L, Lu C, Wang Y, Cheng Y (2007) Hydrothermal synthesis and characterization of MnWO4 nanoplates and their ionic conductivity. Mate Chem Phys 103:433–436CrossRefGoogle Scholar
  20. 20.
    Tang J, Ye J (2005) Correlation of crystal structures and electronic structures and photocatalytic properties of the W-containing oxides. J Mater Chem 15:4246–4251CrossRefGoogle Scholar
  21. 21.
    Raffaelle RP, Harris JD, Hehemann D, Scheiman D, Rybicki G, Hepp AF (2000) A facile route to thin-film solid state lithium microelectronic batteries. J Power Sources 89:52–55CrossRefGoogle Scholar
  22. 22.
    Pandey PK, Bhave NS, Kharat RB (2007) Characterization of spray deposited CoWO4 thin films for photovoltaic electrochemical studies. J Mater Sci 42:7927–7933CrossRefGoogle Scholar
  23. 23.
    Montemayor SM, Fuentes AF (2004) Electrochemical characteristics of lithium insertion in several 3D metal tungstates (MWO4, M=Mn, Co., Ni and Cu) prepared by aqueous reactions. Ceram Int 30:393–400CrossRefGoogle Scholar
  24. 24.
    Mączka, Ptak Maciej, Pikul A, Kępiński L, Tomaszewski PE, Hanuza J (2012) Phonon and magnetic properties of nanocrystalline MnWO4 prepared by hydrothermal method. Vib Spectrosc 58:163–168CrossRefGoogle Scholar
  25. 25.
    Zhou Y-X, Zhang Q, Gong J-Y, Yu S-H (2008) Surfactant-assisted hydrothermal synthesis and magnetic properties of urchin-like MnWO4 microspheres. J Phys Chem C 112(35):13383–13389CrossRefGoogle Scholar
  26. 26.
    Sang X, Wang P, Ai L, Li Y, Bu J (2011) Preparation of fine Ag2WO4 antibactereial powders and its application in the sanitary ceramics. Adv Mater Res 284–286:1321–1325Google Scholar
  27. 27.
    Cavalcante LS, Almeida MAP, Avansi W, Tranquilin RL, Longo E, Batista NC, Mastelaro VR, Siu Li M (2012) Cluster coordination and photoluminescence properties of α-Ag2WO4 microcrystals. Inorg Chem 51:10675–10687CrossRefGoogle Scholar
  28. 28.
    Song Z, Ma J, Sun H, Sun Y, Fang J, Liu Z, Gao C, Liu Y, Zhao J (2009) Low-temperature molten salt synthesis and characterization of CoWO4 nano-particles. Mater Sci Eng B Adv 163:62–65CrossRefGoogle Scholar
  29. 29.
    Almeida MAP, Cavalcante LS, Varela JA, Siu Li M, Longo E (2012) Effect of different surfactants on the shape, growth and photoluminescence behavior of MnWO4 crystals synthesized by the microwave-hydrothermal method. Adv Powder Technol 23:124–128CrossRefGoogle Scholar
  30. 30.
    Austin Suthanthiraraj S, Sarojini S (2012) Ionic transport and surface morphological studies on SbI3–Ag2WO4 mixed system for solid state battery applications. Chem Sci Trans 1:13–22CrossRefGoogle Scholar
  31. 31.
    Saranya S, Senthilkumar ST, Vijaya Sankar K, Kalai Selvan R (2012) Synthesis of MnWO4 nanorods and its electrical and electrochemical properties. J Electroceram 28:220–225CrossRefGoogle Scholar
  32. 32.
    Pan L, Zhang Z-D (2010) Synthesis and electrocatalytic property of one-dimensional nano-Co3O4, Ag/Co3O4 and CuO/Co3O4. Chinese J Inorg Chem 26(4):573–580Google Scholar
  33. 33.
    Wu SG, Zheng LZ, Rui L, Lin XQ (2001) Electrochemical studies on the oxidation of thymine at β-cyclodextrin modified electrode. Electroanalysis 13:967–970CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringHuainan Normal UniversityHuainanChina
  2. 2.Anhui Key Laboratory of Low Temperature Co-fired MaterialHuainan Normal UniversityHuainanChina

Personalised recommendations