Advertisement

Uranium(VI) recovery from acidic leach liquor using manganese oxide coated zeolite (MOCZ) modified with amine

  • L. A. Yousef
  • A. R. Bakry
  • A. A. AhmadEmail author
Article
  • 11 Downloads

Abstract

Manganese oxide coated zeolite modified with trioctyl amine (MOCZ/TOA) was tested for adsorption of uranium. Different experiments were performed to evaluate the optimum adsorption conditions; pH, dose, uranium concentration, temperature variation and contact time. Maximum adsorption capacity reached 99 mg/g according to Langmuir model. The study of thermodynamic parameters showed that sorption process is non spontaneous, exothermic and random. Studies on process kinetics showed that the process obeys pseudo-second order model. Uranium desorption was accomplished using 0.3 M H2SO4. Optimum conditions were carried out for uranium recovery from sedimentary geologic sample from Gattar area, North Eastern Desert, Egypt. The final uranium precipitate was characterized by ICP-OES technique.

Keywords

MOCZ/TOA Uranium(VI) Kinetic Equilibrium Adsorption Elution 

Notes

Funding

This work was funded by the Nuclear Materials Authority as a part of its research activities. This article was reviewed and approved for publishing by the Nuclear Materials Authority with no obligation on the authors’ part to revise the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ozay O, Ekici S, Aktas N, Sahiner N (2011) J Environ Manag 92:3121.  https://doi.org/10.1016/j.jenvman.2011.08.004 CrossRefGoogle Scholar
  2. 2.
    Attallah MF, Hassan HS, Youssef MA (2019) J Appl Radiat Isotop 147:40.  https://doi.org/10.1016/j.apradiso.2019.01.015 CrossRefGoogle Scholar
  3. 3.
    Akkaya R, Akkaya B (2013) J Nucl Mater 434:328.  https://doi.org/10.1016/j.jnucmat.2012.11.056 CrossRefGoogle Scholar
  4. 4.
    Shapkin NP, Ermak IM, Razov VI (2014) Russ J Inorg Chem 59:587.  https://doi.org/10.1134/S0036023614060187 CrossRefGoogle Scholar
  5. 5.
    Choi H, Yu SW, Kim KH (2016) J Taiw Inst Chem Eng 63:482.  https://doi.org/10.1016/j.jtice.2016.03.005 CrossRefGoogle Scholar
  6. 6.
    Yamaguchi N, Taniyama I, Kimura T, Yoshioka K, Saito M (2016) Soil Sci Plant Nutr 62(3):303.  https://doi.org/10.1080/00380768.2016.1196119 CrossRefGoogle Scholar
  7. 7.
    Ramesh K, Reddy DD (2011) Adv Agron 113:219.  https://doi.org/10.1016/B978-0-12-386473-4.00004-X CrossRefGoogle Scholar
  8. 8.
    Shapkin NP, Shkuratov AL, Razov VI (2014) Russ J Inorg Chem 59:1004.  https://doi.org/10.1134/S0036023614090150 CrossRefGoogle Scholar
  9. 9.
    Misaelides P, Godelitsas A, Filippidis A, Charistos D, Anousis I (1995) Sci Total Environ 173:237.  https://doi.org/10.1016/0048-9697(95)04748-4 CrossRefGoogle Scholar
  10. 10.
    Han R, Zou W, Wang Y, Zhu L (2007) J Environ Radiol 93:127.  https://doi.org/10.1016/j.jenvrad.2006.12.003 CrossRefGoogle Scholar
  11. 11.
    Barkat M, Nibou D, Amokrane S, Chegrouche S, Mellah A (2015) C R Chim 18:261.  https://doi.org/10.1016/j.crci.2014.09.011 CrossRefGoogle Scholar
  12. 12.
    Nouh E, Amin M, Gouda M, Abd-Elmagid A (2015) J Environ Chem Eng 3:523.  https://doi.org/10.1016/j.jece.2015.01.013 CrossRefGoogle Scholar
  13. 13.
    Shamsan SO, Gaikwad DK, Sayyed MI, Al-Rashdi K, Pawar PP (2018) Mat Today Proc 5:17930.  https://doi.org/10.1016/j.matpr.2018.06.122 CrossRefGoogle Scholar
  14. 14.
    Cinar S, Baykal BB (2005) Water Sci Technol 51(11):71.  https://doi.org/10.2166/wst.2005.0392 CrossRefPubMedGoogle Scholar
  15. 15.
    Blatov VA, Ilyushin GD, Proserpio DM (2010) J Inorg Chem 49(4):1811.  https://doi.org/10.1021/ic9021933 CrossRefGoogle Scholar
  16. 16.
    Tsitsishvili V, Dolaberidze N, Urotadze S, Alelishvili M, Mirdzveli N, Nijaradze M (2017) Chem J Moldova 12(1):95.  https://doi.org/10.19261/cjm.2017.413 CrossRefGoogle Scholar
  17. 17.
    Sharma P, Han MH, Cho CH (2015) J Nanomater 1:1.  https://doi.org/10.1155/2015/912575 CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Zou W, Zhang J, Li K, Han P, Han R (2009) Adsorp Sci Technol 27(6):549.  https://doi.org/10.1260/0263-6174.27.6.549 CrossRefGoogle Scholar
  20. 20.
    Lyu C, Yang X, Zhang S, Zhang Q, Su X (2017) Environ Technol 40:1.  https://doi.org/10.1080/09593330.2017.1410579 CrossRefGoogle Scholar
  21. 21.
    Krivoshapkin P, Ivanets A, Torlopov M, Mikhaylov V, Srivastava V, Sillanpää M, Prozorovich VG, Kuznetsova T, Koshevaya E, Krivoshapkina E (2019) Carbohydr Polym 210:135.  https://doi.org/10.1016/j.carbpol.2019.01.045 CrossRefPubMedGoogle Scholar
  22. 22.
    Zemskova LA, Voit AV, Barinov NN (2016) Russ J Inorg Chem 61:1567.  https://doi.org/10.1134/S0036023616120226 CrossRefGoogle Scholar
  23. 23.
    Babel S, Kurniawan TA (2003) J Hazard Mater 97(3):219.  https://doi.org/10.1016/S0304-3894(02)00263-7 CrossRefPubMedGoogle Scholar
  24. 24.
    Sayyah EM, El-hussaini OM, Abd El-Ghany MS, Abuzaid AHM, Abd-El Gawad HH (2012) Arab J Nucl Sci Appl 45:130Google Scholar
  25. 25.
    Cheira MF, Atia BM, Kouraim MN (2017) J Radiat Res Appl Sci 10:307.  https://doi.org/10.1016/j.jrras.2017.07.005 CrossRefGoogle Scholar
  26. 26.
    Han Q, Du M, Guan Y, Luo G, Zhang Z, Li T, Ji Y (2020) Chem Phys Lett.  https://doi.org/10.1016/j.cplett.2020.137092 CrossRefGoogle Scholar
  27. 27.
    Datta D, Uslu H, Kumar S (2015) J Chem Eng 60(11):3193.  https://doi.org/10.1021/acs.jced.5b00413 CrossRefGoogle Scholar
  28. 28.
    Pourreza N, Parham H, Pourbati MA (2015) Desalin Water Treat 57(37):1.  https://doi.org/10.1080/19443994.2015.1086892 CrossRefGoogle Scholar
  29. 29.
    Lashaki MJ, Khiavi S, Sayari A (2019) Chem Soc Rev 48(12):3320.  https://doi.org/10.1039/C8CS00877A CrossRefGoogle Scholar
  30. 30.
    Lamy-Mendes A, Torres RB, Vareda JP, Lopes D, Ferreira M, Valente V, Girão AV, Valente AJM, Durães L (2019) Molecules 24(20):3701.  https://doi.org/10.3390/molecules24203701 CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Faghihian H, Nourmoradi H, Shokouhi M (2012) Pol J Chem Technol 14:50.  https://doi.org/10.2478/v10026-012-0059-4 CrossRefGoogle Scholar
  32. 32.
    Faghihian H, Nourmoradi H, Shokouhi M (2013) Desalin Water Treat 52:305.  https://doi.org/10.1080/19443994.2013.785367 CrossRefGoogle Scholar
  33. 33.
    Ali Z, Khan A, Ahmad R (2015) Microporous Mesoporous Mater 203:8.  https://doi.org/10.1016/j.micromeso.2014.10.004 CrossRefGoogle Scholar
  34. 34.
    Xiaonan D, Genggeng Q, Peng W, Giannelis EP (2012) Chem Phys Chem 13:2536.  https://doi.org/10.3390/molecules24203701 CrossRefGoogle Scholar
  35. 35.
    Vareda JP, Durães L (2017) J Sol Gel Sci Technol 84:400.  https://doi.org/10.1007/s10971-017-4326-y CrossRefGoogle Scholar
  36. 36.
    Vareda JP, Durães L (2019) Environ Technol 40:529.  https://doi.org/10.1080/09593330.2017.1397766 CrossRefPubMedGoogle Scholar
  37. 37.
    Vareda JP, Valente AJM, Durães L (2019) J Environ Manag 246:101.  https://doi.org/10.1016/j.jenvman.2019.05.126 CrossRefGoogle Scholar
  38. 38.
    Mathew KJ, Mason B, Morales ME, Narayann UI (2009) J Radioanal Nucl Chem 282:939.  https://doi.org/10.1007/s10967-009-0186-4 CrossRefGoogle Scholar
  39. 39.
    Marczenko Z, Balcerzak M (2000) Uranium. In: Separation, preconcentration and spectrophotometry in inorganic analysis, vol 10. Elsevier, pp 446–455.  https://doi.org/10.1016/S0926-4345(00)80118-2 Google Scholar
  40. 40.
    Shapiro L, Brannock WW (1962) US Geological Survey Bulletin (Revised Edition), vol 114A. United States Government Printing Office, WashingtonGoogle Scholar
  41. 41.
    Govindaraju K, Mevelle C, Chouard C (1976) Anal Chem 48:1325CrossRefGoogle Scholar
  42. 42.
    Runping H, Weihua Z, Wang Y (2007) J Environ Radioactiv 93(3):127.  https://doi.org/10.1016/j.jenvrad.2006.12.003 CrossRefGoogle Scholar
  43. 43.
    Weihua Z, Lei Z, Runping H (2009) Chin J Chem Eng 17(4):585.  https://doi.org/10.1016/S1004-9541(08)60248-7 CrossRefGoogle Scholar
  44. 44.
    Ferrah N, Abderrahim O, Didi MA, Villemin D (2011) J Radioanal Nucl Chem 289:721.  https://doi.org/10.1007/s10967-011-1172-1 CrossRefGoogle Scholar
  45. 45.
    Wan Ngah WS, Endud CS, Mayanar R (2002) React Funct Polym 50(2):181.  https://doi.org/10.1016/S1381-5148(01)00113-4 CrossRefGoogle Scholar
  46. 46.
    Tsezos M, Volesky B (1982) Biotechnol Bioeng 24:385CrossRefGoogle Scholar
  47. 47.
    Yahia M, Torkia Y, Knani S, Hachicha MA, Khalfaoui M, Ben Lamine A (2013) Ads Sci Technol 31:341.  https://doi.org/10.1260/0263-6174.31.4.341 CrossRefGoogle Scholar
  48. 48.
    Mishra SP, Ganga P, Raju A, Mira D (2012) J Chem Pharma Res 4(2):1207Google Scholar
  49. 49.
    Panda H, Tiadi N, Mohanty M, Mohanty CR (2017) S Afr J Chem Eng 23:132.  https://doi.org/10.1016/j.sajce.2017.05.002 CrossRefGoogle Scholar
  50. 50.
    Firas SA (2013) Adv Natur Appl Sci 7(3):336Google Scholar
  51. 51.
    Miraoui A, Didi MA (2015) Eur Chem Bull 4(11):512.  https://doi.org/10.17628/ECB.2015.4.512 CrossRefGoogle Scholar
  52. 52.
    Nyquist RA, Craver CD (1977) In: Craver CD (ed) The coblentz society desk book of infrared spectra. The Coblentz Society, French Village (MO), p 399pGoogle Scholar
  53. 53.
    Yousef LA, Morsy AMA, Hagag MS (2020) Sep Sci Technol 55(4):648.  https://doi.org/10.1080/01496395.2019.1574305 CrossRefGoogle Scholar
  54. 54.
    Morsy AMA (2015) Environ Technol Innov 4:299.  https://doi.org/10.1016/j.eti.2015.10.002 CrossRefGoogle Scholar
  55. 55.
    Yousef LA, Bakry AR, Abd El Magied MO (2019) J Radioanal Nuclear Chem.  https://doi.org/10.1007/s10967-019-06871-5 CrossRefGoogle Scholar
  56. 56.
    Yousef LA, Bakry AR, Ahmad AA (2019) SN Appl Sci 1:974.  https://doi.org/10.1007/s42452-019-1006-2 CrossRefGoogle Scholar
  57. 57.
    Das DP, Das J, Parida K (2003) Colloid Interface Sci 261:213.  https://doi.org/10.1016/S0021-9797(03)00082-1 CrossRefGoogle Scholar
  58. 58.
    Liao XP, Shi B (2005) Environ Sci Technol 39:4628.  https://doi.org/10.1021/es0479944 CrossRefPubMedGoogle Scholar
  59. 59.
    Chaudhary N, Balomajumder C (2014) Taiwan Inst Chem Eng 45:852.  https://doi.org/10.1016/j.jtice.2013.08.016 CrossRefGoogle Scholar
  60. 60.
    Kannamba B, Reddy KL, Apparao BV (2010) Hazard Mater 175:935.  https://doi.org/10.1016/j.jhazmat.2009.10.098 CrossRefGoogle Scholar
  61. 61.
    Wen Z, Niu Y (2017) IOP Conf Ser Mater Sci Eng 191:012035.  https://doi.org/10.1088/1757-899X/191/1/012035 CrossRefGoogle Scholar
  62. 62.
    Chabani M, Amrane A, Bensmaili A (2006) J Chem Eng 125:111.  https://doi.org/10.1016/j.cej.2006.08.014 CrossRefGoogle Scholar
  63. 63.
    Weber TW, Chakraborti RK (1974) Am Inst Chem Eng 20:228.  https://doi.org/10.1166/asem.2015.1664 CrossRefGoogle Scholar
  64. 64.
    Langmuir I (1918) Am Chem Soc 40:1361.  https://doi.org/10.1021/ja02242a004 CrossRefGoogle Scholar
  65. 65.
    Tunali S, Akar T (2006) Hazard Mater 131:137.  https://doi.org/10.1016/j.jhazmat.2005.09.024 CrossRefGoogle Scholar
  66. 66.
    Humelnicu D, Drochioiu G, Sturza MI, Cecal A, Popa K (2006) Radioanal Nucl Chem 270:637.  https://doi.org/10.1007/s10967-006-0473-2 CrossRefGoogle Scholar
  67. 67.
    Freundlich HMF (1906) Phys Chem 57:385Google Scholar
  68. 68.
    Lagergren S (1898) Kungliga Svenska Vetenskapsakademiens Handlinger 24:1Google Scholar
  69. 69.
    Zhang X, Jiao C, Wang J, Liu Q, Li R, Yang P (2012) Chem Eng 198:412.  https://doi.org/10.1016/j.cej.2012.05.090 CrossRefGoogle Scholar
  70. 70.
    Wu FC, Tseng RL, Juang RS (2001) J Hazard Mater 81:167.  https://doi.org/10.1016/S0304-3894(00)00340-X CrossRefPubMedGoogle Scholar
  71. 71.
    Ding L, Deng HP, Wu C, Han X (2012) Chem Eng 181:360.  https://doi.org/10.1016/j.cej.2011.11.096 CrossRefGoogle Scholar
  72. 72.
    Bayramoglu G, Arica MY (2011) Water Air Soil Poll 221:391.  https://doi.org/10.1007/s11270-011-0798-5 CrossRefGoogle Scholar
  73. 73.
    Dong J, Ozaki Y (1997) Macromolecules 30:286.  https://doi.org/10.1021/ma9607168 CrossRefGoogle Scholar
  74. 74.
    Azar PR, Falamaki C (2012) J Ind Eng Chem 18:737.  https://doi.org/10.1016/j.jiec.2011.11.112 CrossRefGoogle Scholar
  75. 75.
    Abdi S, Nasiri M, Mesbahi A, Khani MH (2017) J Hazard Mater 332:132.  https://doi.org/10.1016/j.jhazmat.2017.01.013 CrossRefPubMedGoogle Scholar
  76. 76.
    Kütahyal C, Eral M (2010) J Nucl Mater 396(2):251.  https://doi.org/10.1016/j.jnucmat.2009.11.018 CrossRefGoogle Scholar
  77. 77.
    Zahran F, El-Maghrabi HH, Hussein G, Abdelmaged SM (2019) Environ Nanotechnol Monit Manag 11:100205.  https://doi.org/10.1016/j.enmm.2018.100205 CrossRefGoogle Scholar
  78. 78.
    Wang G, Liu J, Wang X, Xie Z, Deng N (2009) J Hazard Mater 168(2):1053.  https://doi.org/10.1016/j.jhazmat.2009.02.157 CrossRefPubMedGoogle Scholar
  79. 79.
    Xia LK, Wang X, Zheng W (2013) J Environ Eng 139(6):887.  https://doi.org/10.1061/(ASCE)EE.1943-7870.0000695 CrossRefGoogle Scholar
  80. 80.
    Claudia A, Ladeira Q, Renato C, Alves G (2007) J Hazard Mater 148(3):499.  https://doi.org/10.1016/j.jhazmat.2007.03.003 CrossRefGoogle Scholar
  81. 81.
    Li X, Li F, Jin Y, Jiang C (2015) J Mol Liq 209:413.  https://doi.org/10.1016/j.molliq.2015.06.014 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2020

Authors and Affiliations

  1. 1.Nuclear Materials AuthorityCairoEgypt

Personalised recommendations