Removal of soluble uranium by illite supported nanoscale zero-valent iron: electron transfer processes and incorporation mechanisms

  • Chen JingEmail author
  • Quan Li
  • Zhi Tang
  • Jiali Xu
  • Yilian LiEmail author


In this study, natural illite is introduced to support nanoscale zero valent iron (NZVI). The chemical composition and the physical properties of illite supported nanoscale zero valent iron (I-NZVI) are systematically investigated, and I-NZVI is found to significantly reduce the agglomeration of the NZVI particles. A comparison of the U removal capacity between I-NZVI and NZVI over various reaction times is then conducted. With an initial concentration of U at 200 μg/L, the I-NZVI removal capacity of U is as high as 3.41 mg U/g Fe, in contrast to 2.01 mg U/g Fe by NZVI at a dosage of 0.1 g/L. The initial pH of the reaction system determines the U removal capacity of I-NZVI, since it controls the speciation of U and the electron transfer processes during the reaction. Overall, based on the comprehensive understandings of the morphological change, variations in the crystalline structure, and the valence states of U and Fe, the removal mechanisms of U by I-NZVI can be concluded as the following processes: (1) the adsorption and incorporation of U(VI) onto the surface of I-NZVI, (2) the incorporation and reduction of U(V) into Fe(II), and (3) the reduction and precipitation of U(IV) with iron.

Graphic abstract


Uranium removal Supported NZVI Morphological evolution Electron transfer Incorporation mechanism 



This work was supported by the China Postdoctoral Science Foundation (No. 2018M642953). The authors would like to acknowledge Dr. B. H. Song from Oak Ridge National Laboratory (USA) for the help on XPS analysis. Authors also thank Dr. Z. Y. Li from the University of Texas at Austin (USA) for the help on polishing language .


  1. 1.
    Renn O, Marshall JP (1950) Coal, nuclear and renewable energy policies in Germany: from the 1950s to the “Energiewende”. Energy Policy 99(2016):224–232Google Scholar
  2. 2.
    Jacobson MZ (2009) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2:148–173CrossRefGoogle Scholar
  3. 3.
    Muradov NZ, Veziroglu TN (2008) “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int J Hydrog Energy 33:6804–6839CrossRefGoogle Scholar
  4. 4.
    Schneider M, Froggatt A, Hazemann J, Latsuta T, Stirling A, Wealer B, Johnstone P, Ramana MV, Hirschhausen CV, Stienne A (2018) The World Nuclear Industry status report 2018. MacArthur Foundation, Paris, p 27Google Scholar
  5. 5.
    Liu B, Peng TJ, Sun HJ, Yue HJ (2017) Release behavior of uranium in uranium mill tailings under environmental conditions. J Environ Radioact 171:160–168PubMedCrossRefGoogle Scholar
  6. 6.
    Eitrheim ES, May D, Forbes TZ, Nelson AW (2016) Disequilibrium of naturally occurring radioactive materials (NORM) in drill cuttings from a horizontal drilling operation. Environ Sci Technol Lett 3:425–429CrossRefGoogle Scholar
  7. 7.
    Nelson AW, Knight AW, Eitrheim ES, Schultz MK (2015) Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study. J Environ Radioact 142:24–28PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Coyte RM, Jain RC, Srivastava SK, Sharma KC, Khalil A, Ma L, Vengosh A (2018) Large-scale uranium contamination of groundwater resources in India. Environ Sci Technol Lett 5:341–347CrossRefGoogle Scholar
  9. 9.
    Krachler R, Krachler R, Gulce F, Keppler BK, Wallner G (2018) Uranium concentrations in sediment pore waters of Lake Neusiedl, Austria. Sci Total Environ 633:981–988PubMedCrossRefGoogle Scholar
  10. 10.
    Nolan J, Weber KA (2015) Natural uranium contamination in major US aquifers linked to nitrate. Environ Sci Technol Lett 2:215–220CrossRefGoogle Scholar
  11. 11.
    Jakhu R, Mehra R, Mittal HM (2016) Exposure assessment of natural uranium from drinking water. Environ Sci Process Impacts 18:1540–1549PubMedCrossRefGoogle Scholar
  12. 12.
    Chen A, Shang C, Shao J, Zhang J, Huang H (2017) The application of iron-based technologies in uranium remediation: a review. Sci Total Environ 575:1291–1306PubMedCrossRefGoogle Scholar
  13. 13.
    Jing C, Li YL, Landsberger S (2016) Review of soluble uranium removal by nanoscale zero valent iron. J Environ Radioact 164:65–72PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou L, Li R, Zhang G, Wang D, Cai D, Wu Z (2018) Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium. Chem Eng J 339:85–96CrossRefGoogle Scholar
  15. 15.
    Liu F, Shan C, Zhang X, Zhang Y, Zhang W, Pan B (2017) Enhanced removal of EDTA-chelated Cu(II) by polymeric anion-exchanger supported nanoscale zero-valent iron. J Hazard Mater 321:290–298PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou J, Lou Z, Xu J, Zhou X, Yang K, Gao X, Zhang Y, Xu X (2019) Enhanced electrocatalytic dechlorination by dispersed and moveable activated carbon supported palladium catalyst. Chem Eng J 358:1176–1185CrossRefGoogle Scholar
  17. 17.
    Wu J, Wang B, Blaney L, Peng G, Chen P, Cui Y, Deng S, Wang Y, Huang J, Yu G (2019) Degradation of sulfamethazine by persulfate activated with organo-montmorillonite supported nano-zero valent iron. Chem Eng J 361:99–108CrossRefGoogle Scholar
  18. 18.
    Peng X, Tian Y, Liu S, Jia X (2017) Degradation of TBBPA and BPA from aqueous solution using organo-montmorillonite supported nanoscale zero-valent iron. Chem Eng J 309:717–724CrossRefGoogle Scholar
  19. 19.
    Xie B, Zuo J, Gan L, Liu F, Wang K (2014) Cation exchange resin supported nanoscale zero-valent iron for removal of phosphorus in rainwater runoff. Front Environ Sci Eng 8:463–470CrossRefGoogle Scholar
  20. 20.
    Dhar P, Kumar A, Katiyar V (2015) Fabrication of cellulose nanocrystal supported stable Fe(0) nanoparticles: a sustainable catalyst for dye reduction, organic conversion and chemo-magnetic propulsion. Cellulose 22:3755–3771CrossRefGoogle Scholar
  21. 21.
    Jiang X, Guo Y, Zhang L, Jiang W, Xie R (2018) Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano Fe0 immobilized mesoporous carbon. Chem Eng J 341:392–401CrossRefGoogle Scholar
  22. 22.
    Wei A, Ma J, Chen J, Zhang Y, Song J, Yu X (2018) Enhanced nitrate removal and high selectivity towards dinitrogen for groundwater remediation using biochar-supported nano zero-valent iron. Chem Eng J 353:595–605CrossRefGoogle Scholar
  23. 23.
    Liu J, Mwamulima T, Wang Y, Fang Y, Song S, Peng C (2017) Removal of Pb(II) and Cr(VI) from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron. J Mol Liq 243:205–211CrossRefGoogle Scholar
  24. 24.
    Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462CrossRefGoogle Scholar
  25. 25.
    Campos B, Aguilar-Carrillo J, Algarra M, Goncalves MA, Rodriguez-Castellon E, da Silva J, Bobos I (2013) Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material. Appl Clay Sci 85:53–63CrossRefGoogle Scholar
  26. 26.
    Kremleva A, Kruger S, Rosch N (2011) Uranyl adsorption at (0 1 0) edge surfaces of kaolinite: a density functional study. Geochim Cosmochim Acta 75:706–718CrossRefGoogle Scholar
  27. 27.
    Jing C, Landsberger S, Li YL (2017) The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater. J Environ Radioact 175–176:1–6PubMedCrossRefGoogle Scholar
  28. 28.
    Jing C, Li YL, Cui RP, Xu JL (2015) Illite-supported nanoscale zero-valent iron for removal of 238U from aqueous solution: characterization, reactivity and mechanism. J Radioanal Nucl Chem 304:859–865CrossRefGoogle Scholar
  29. 29.
    Fernandes MM, Ver N, Baeyens B (2015) Predicting the uptake of Cs Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite. Appl Geochem 59:189–199CrossRefGoogle Scholar
  30. 30.
    Du YF, Yin ZX, Wu HY, Li P, Qi W, Wu WS (2015) Sorption of U(VI) on magnetic illite: effects of pH, ions, humic substances and temperature. J Radioanal Nucl Chem 304:793–804CrossRefGoogle Scholar
  31. 31.
    Li FB, Gao ZM, Li XY, Fang LJ (2014) The effect of Paecilomyces catenlannulatus on removal of U(VI) by illite. J Environ Radioact 137:31–36PubMedCrossRefGoogle Scholar
  32. 32.
    Airey P (1986) Radionuclide migration around uranium ore bodies in the Alligator Rivers Region of the Northern Territory of Australia—analogue of radioactive waste repositories—a review. Chem Geol 55:255–268CrossRefGoogle Scholar
  33. 33.
    Seaman JC, Meehan T, Bertsch P (2001) Immobilization of cesium-137 and uranium in contaminated sediments using soil amendments. J Environ Qual 30:1206–1213PubMedCrossRefGoogle Scholar
  34. 34.
    Sheng GD, Shao XY, Li YM, Li JF, Dong HP, Cheng W, Gao X, Huang YY (2014) Enhanced removal of uranium(VI) by nanoscale zerovalent iron supported on Na-bentonite and an investigation of mechanism. J Phys Chem A 118:2952–2958PubMedCrossRefGoogle Scholar
  35. 35.
    Xu JL, Li YL, Jing C, Zhang HC, Ning Y (2014) Removal of uranium from aqueous solution using montmorillonite-supported nanoscale zero-valent iron. J Radioanal Nucl Chem 299:329–336CrossRefGoogle Scholar
  36. 36.
    Zhang YL, Chen W, Dai CM, Zhou CL, Zhou XF (2015) Structural evolution of nanoscale zero-valent iron (nZVI) in anoxic Co2+ solution: interactional performance and mechanism. Sci Rep 5:9Google Scholar
  37. 37.
    Roberts HE, Morris K, Law GTW, Mosselmans JFW, Bots P, Kvashnina K, Shaw S (2017) Uranium(V) incorporation mechanisms and stability in Fe(II)/Fe(III) (oxyhydr)oxides. Environ Sci Technol Lett 4:421–426CrossRefGoogle Scholar
  38. 38.
    Schindler M, Hawthorne FC, Freund MS, Burns PC (2009) XPS spectra of uranyl minerals and synthetic uranyl compounds. I: the U 4f spectrum. Geochim Cosmochim Acta 73:2471–2487CrossRefGoogle Scholar
  39. 39.
    Tsarev S, Collins RN, Ilton ES, Fahy A, Waite TD (2017) The short-term reduction of uranium by nanoscale zero-valent iron (nZVI): role of oxide shell, reduction mechanism and the formation of U(v)-carbonate phases. Environ Sci Nano 4:1304–1313CrossRefGoogle Scholar
  40. 40.
    Boland DD, Collins RN, Glover CJ, Payne TE, Waite TD (2014) Reduction of U(VI) by Fe(II) during the Fe(II)-accelerated transformation of ferrihydrite. Environ Sci Technol 48:9086–9093PubMedCrossRefGoogle Scholar
  41. 41.
    Massey MS, Lezama-Pacheco JS, Jones ME, Ilton ES, Cerrato JM, Bargar JR, Fendorf S (2014) Competing retention pathways of uranium upon reaction with Fe(II). Geochim Cosmochim Acta 142:166–185CrossRefGoogle Scholar
  42. 42.
    Li XY, Zhang M, Liu YB, Li X, Liu YH, Hua R, He CT (2013) Removal of U(VI) in aqueous solution by nanoscale zero-valent iron(nZVI). Water Qual Expos Health 5:31–40CrossRefGoogle Scholar
  43. 43.
    Sun YB, Wang Q, Yang ST, Sheng GD, Guo ZQ (2011) Characterization of nano-iron oxyhydroxides and their application in UO2 2+ removal from aqueous solutions. J Radioanal Nucl Chem 290:643–648CrossRefGoogle Scholar
  44. 44.
    Missana T, Garcia-Gutierrez M, Maffiotte C (2003) Experimental and modeling study of the uranium (VI) sorption on goethite. J Colloid Interf Sci 260:291–301CrossRefGoogle Scholar
  45. 45.
    Singh A, Catalano JG, Ulrich KU, Giammar DE (2012) Molecular-scale structure of uranium(VI) immobilized with goethite and phosphate. Environ Sci Technol 46:6594–6603PubMedCrossRefGoogle Scholar
  46. 46.
    Dickinson M, Scott TB (2010) The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 178:171–179PubMedCrossRefGoogle Scholar
  47. 47.
    Noli F, Babaiti A, Misaelides P, Pliatsikas N, Vouroutzis N (2018) Removal of U (VI) from acidic and alkaline aqueous solutions by zero-valent iron nanoparticles. J Radioanal Nucl Chem 318:2107–2115CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Environmental StudiesChina University of GeosciencesWuhanChina

Personalised recommendations