Mineralogical influence over the presence of primordial radionuclide along the industrial corridor of northern coastal region of Chennai

  • I. Inigo Valan
  • R. Mathiyarasu
  • C. Lakshmi Narasimhan
  • S. G. D. Sridhar
  • V. Narayanan
  • A. StephenEmail author


The present study focuses on the correspondence between the natural radioactivity and geological parameters such as the textural nature and mineralogical variation of the sediment. The activity concentration of the primordial radionuclide varied in correspondence with the variation in the heavy mineral accumulation along the coastal stretch and the coal ash deposition along the hinterland region. XRD analysis on heavy minerals confirms the presence of heavy mineral—Ilmenite to be present predominantly in the heavy minerals fraction of the samples. The magnetic susceptibility values confirm, the correspondence between the magnetic minerals and materials and the activity concentration of 238U and 232Th in the sediments.


Primordial radionuclides Absorbed dose rate Textural analysis Heavy minerals Magnetic susceptibility 



The help and support of Dr. M. T. Jose and Mrs. I. Vijayalakshmi, IGCAR are gratefully acknowledged. One of the author (IIV) thank Dr. B. Venkatraman, Director, HSEG, IGCAR for permitting to use Gamma ray spectroscopy. Sincere thanks to Dr. L. Isai Arasu, Former Head, Department of Zoology, ANJA College for his constant help. Thanks to Dr. K. Dhanapal, Dr. M. Manikandan and Ms. R. Sasikala, for their support. One of the author (IIV) thank Mr. M. Sathish, Mr. D. Prakash, and Mr. Manuel. T. Kagoo, for their assistance during field work. The financial support by UGC-CPEPA is acknowledged with gratitude.


  1. 1.
    Taqi AH, Al-Ani LAA, Ali AM (2016) Assessment of the natural radioactivity levels in Kirkuk oil field. J Radiat Res Appl Sci 9(3):337–344. CrossRefGoogle Scholar
  2. 2.
    Njinga RL, Tshivhase VM (2016) Lifetime cancer risk due to gamma radioactivity in soils from Tudor Shaft mine environs, South Africa. J Radiat Res Appl Sci 9(3):310–315. CrossRefGoogle Scholar
  3. 3.
    You M, Hu Y, Lu J, Li C (2015) Evaluation of the radiological characterization in a coal-fired power plant, China. Environ Prog Sustain Energy 34(4):1080–1084. CrossRefGoogle Scholar
  4. 4.
    Tadmor J (1986) Radioactivity from coal-fired power plants: a review. J Environ Radioact 4(3):177–204. CrossRefGoogle Scholar
  5. 5.
    Raju K, Vijayaraghavan K, Seshachalam S, Muthumanickam J (2011) Impact of anthropogenic input on physicochemical parameters and trace metals in marine surface sediments of Bay of Bengal off Chennai, India. Environ Monit Assess 177(1):95–114. CrossRefPubMedGoogle Scholar
  6. 6.
    Seshan BRR, Natesan U, Deepthi K (2010) Geochemical and statistical approach for evaluation of heavy metal pollution in core sediments in southeast coast of India. Int J Environ Sci Technol 7(2):291–306. CrossRefGoogle Scholar
  7. 7.
    Seshan BRR, Natesan U, Deepthi K (2012) Geochemical evidence of terrigenous influence in sediments of Buckingham canal, Ennore, Southeast coast of India. Environ Earth Sci 66(2):489–503. CrossRefGoogle Scholar
  8. 8.
    Kuppusamy MR, Giridhar VV (2006) Factor analysis of water quality characteristics including trace metal speciation in the coastal environmental system of Chennai Ennore. Environ Int 32(2):174–179. CrossRefPubMedGoogle Scholar
  9. 9.
    Jayaprakash M (2002) Geochemical assesment of heavy metal pollution in Ennore creek, North of Chennai, Tamil Nadu, India. Ph.D. Thesis, University of Madras, ChennaiGoogle Scholar
  10. 10.
    GSI (2006) Geological survey of India miscellaneous publication no 30 (Part IV, Tamil Nadu and Pondicherry).
  11. 11.
    Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40(3):586–593. CrossRefGoogle Scholar
  12. 12.
    Ramasamy V, Paramasivam K, Suresh G, Jose MT (2014) Role of sediment characteristics on natural radiation level of the Vaigai river sediment, Tamilnadu, India. J Environ Radioact 127:64–74. CrossRefPubMedGoogle Scholar
  13. 13.
    Manikandan M, Kumar KS, Aparnadevi N, Venkateswaran C (2015) Hopkinson effect and temperature-dependent dielectric properties of single domain SrFe12O19 particles. Phys Status Solidi (a) 212(10):2179–2185. CrossRefGoogle Scholar
  14. 14.
    UNSCEAR (2008) United Nations scientific committee on the effect of atomic radiation, Volume 1, Annex B. Sources and effects of ionizing radiation. Report to general assembly with scientific annexes. United Nations, New YorkGoogle Scholar
  15. 15.
    Ramasamy V, Sundarrajan M, Paramasivam K, Meenakshisundaram V, Suresh G (2013) Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala, India. Appl Radiat Isot 73(Supplement C):21–31. CrossRefPubMedGoogle Scholar
  16. 16.
    Ravisankar R, Chandramohan J, Chandrasekaran A, Prince Prakash Jebakumar J, Vijayalakshmi I, Vijayagopal P, Venkatraman B (2015) Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Mar Pollut Bull 97(1–2):419–430. CrossRefPubMedGoogle Scholar
  17. 17.
    Schulz RK (1965) Soil chemistry of radionuclides. Health Phys 11(12):1317–1324CrossRefGoogle Scholar
  18. 18.
    Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochim Cosmochim Acta 70(6):1379–1387. CrossRefGoogle Scholar
  19. 19.
    Chandrasekaran A, Ravisankar R, Rajalakshmi A, Eswaran P, Vijayagopal P, Venkatraman B (2015) Assessment of natural radioactivity and function of minerals in soils of Yelagiri hills, Tamilnadu, India by Gamma Ray spectroscopic and Fourier Transform Infrared (FTIR) techniques with statistical approach. Spectrochim Acta Part A Mol Biomol Spectrosc 136:1734–1744. CrossRefGoogle Scholar
  20. 20.
    Canbaz B, Çam NF, Yaprak G, Candan O (2010) Natural radioactivity (226Ra, 232Th and 40 K) and assessment of radiological hazards in the Kestanbol granitoid, Turkey. Radiat Prot Dosim 141(2):192–198. CrossRefGoogle Scholar
  21. 21.
    Amin YM, Uddin Khandaker M, Shyen AKS, Mahat RH, Nor RM, Bradley DA (2013) Radionuclide emissions from a coal-fired power plant. Appl Radiat Isot 80:109–116. CrossRefPubMedGoogle Scholar
  22. 22.
    Ćujić M, Dragović S, Đorđević M, Dragović R, Gajić B, Miljanić Š (2015) Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution. Environ Sci Pollut Res 22(13):10317–10330. CrossRefGoogle Scholar
  23. 23.
    Cevik U, Damla N, Koz B, Kaya S (2008) Radiological Characterization around the Afsin-Elbistan Coal-Fired Power Plant in Turkey. Energy Fuels 22(1):428–432. CrossRefGoogle Scholar
  24. 24.
    Tufail M (2012) Radium equivalent activity in the light of UNSCEAR report. Environ Monit Assess 184(9):5663–5667. CrossRefPubMedGoogle Scholar
  25. 25.
    Júnior JAS, Amaral RS, Silva CM, Menezes RSC (2010) Radium equivalent and annual effective dose from geological samples from Pedra–Pernambuco–Brazil. Radiat Meas 45(7):861–864. CrossRefGoogle Scholar
  26. 26.
    Örgün Y, Altınsoy N, Şahin SY, Güngör Y, Gültekin AH, Karahan G, Karacık Z (2007) Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Çanakkale), Western Anatolia, Turkey. Appl Radiat Isot 65(6):739–747. CrossRefPubMedGoogle Scholar
  27. 27.
    UNSCEAR (2008) Sources and effects of ionizing radiation. Report to general assembly with scientific annexes, volume 1, Annex B. United Nations, New YorkGoogle Scholar
  28. 28.
    El-Arabi AM, Abbady AGE, Hussein AS (2006) Gamma-ray measurements of natural radioactivity in sedimentary rocks from Egypt. Nucl Sci Tech 17(2):123–128. CrossRefGoogle Scholar
  29. 29.
    El-Gamal A, Nasr S, El-Taher A (2007) Study of the spatial distribution of natural radioactivity in the upper Egypt Nile River sediments. Radiat Meas 42(3):457–465. CrossRefGoogle Scholar
  30. 30.
    Trefethen JM (1950) Classification of sediments. Am J Sci 248(1):55–62. CrossRefGoogle Scholar
  31. 31.
    Nallusamy B, Babu S, Suresh Babu DS (2013) Heavy mineral distribution and characterisation of ilmenite of Kayamkulam—thothapally Barrier Island, southwest coast of India. J Geol Soc India 81(1):129–140. CrossRefGoogle Scholar
  32. 32.
    Haredy RA (2003) Distribution and provenance of heavy minerals in the surficial sediments of the Minnamurra and Bass Point New South Wales. University of Wollongong, WollongongGoogle Scholar
  33. 33.
    Hubert JF (1962) A zircon–tourmaline–rutile maturity index and independence of composition of heavy mineral assemblages with gross composition and texture of sandstone. J Sediment Petrol 32:440–450Google Scholar
  34. 34.
    Ikhane PR, Akintola AI, Bankole SI, Oyebolu OO, Ogunlana EO (2013) Granulometric analysis and heavy mineral studies of the sandstone facies exposed near Igbile, southwestern Nigeria. Int Res J Geol Min 3(4):158–178Google Scholar
  35. 35.
    Kettanah YA, Ismail SA (2016) Heavy mineral concentrations in the sandstones of Amij Formation with particular emphasis on the mineral chemistry and petrographic characteristics of monazite, western desert of Iraq. J Afr Earth Sci 123:350–369. CrossRefGoogle Scholar
  36. 36.
    Sengupta A, Jayabun S, Pius IC, Thulasidas SK (2016) Synthesis, characterization and application of metal oxides impregnated silica for the sorption of thorium. J Radioanal Nucl Chem 309(2):841–852. CrossRefGoogle Scholar
  37. 37.
    Haridasan PP, Pillai PMB, Tripathi RM, Puranik VD (2008) Thorium in ilmenite and its radiological implications in the production of titanium dioxide. Radiat Prot Dosimetry 129(4):381–385. CrossRefPubMedGoogle Scholar
  38. 38.
    Livshits TS (2009) Stability of artificial ferrite garnets with actinides and lanthanoids in water solutions. Geol Ore Depos 50(6):470–481. CrossRefGoogle Scholar
  39. 39.
    Barnett MO, Jardine PM, Brooks SC (2002) U(VI) adsorption to heterogeneous subsurface media: application of a surface complexation model. Environ Sci Technol 36(5):937–942. CrossRefPubMedGoogle Scholar
  40. 40.
    Melson Nathan H, Haliena Brian P, Kaplan Daniel I, Barnett Mark O (2012) Adsorption of tetravalent thorium by geomedia. RACT 100(11):827. CrossRefGoogle Scholar
  41. 41.
    Rojo I, Seco F, Rovira M, Giménez J, Cervantes G, Martí V, de Pablo J (2009) Thorium sorption onto magnetite and ferrihydrite in acidic conditions. J Nucl Mater 385(2):474–478. CrossRefGoogle Scholar
  42. 42.
    Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143(1):1–10. CrossRefPubMedGoogle Scholar
  43. 43.
    Cowan EA, Seramur KC, Hageman SJ (2013) Magnetic susceptibility measurements to detect coal fly ash from the Kingston Tennessee spill in Watts Bar Reservoir. Environ Pollut 174:179–188. CrossRefPubMedGoogle Scholar
  44. 44.
    Kanu MO, Meludu OC, Oniku SA (2014) Comparative study of top soil magnetic susceptibility variation based on some human activities. Geofís Int 53(4):411–423. CrossRefGoogle Scholar
  45. 45.
    Gautam P, Blaha U, Appel E (2004) Integration of magnetic properties and heavy metal chemistry to quantify environmental pollution in urban soils, Kathmandu, Nepal. In: Extended abstract: 19th Himalaya–Karakoram–Tibet workshop, Niseko, JapanGoogle Scholar
  46. 46.
    Dearing JA, Bird PM, Dann RJL, Benjamin SF (1997) Secondary ferrimagnetic minerals in Welsh soils: a comparison of mineral magnetic detection methods and implications for mineral formation. Geophys J Int 130(3):727–736. CrossRefGoogle Scholar
  47. 47.
    Dearing JA (1999) Environmental Magnetic Susceptibility, Using the Bartington MS2 System. Chi Publishing, EnglandGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Nuclear PhysicsUniversity of Madras, Guindy CampusChennaiIndia
  2. 2.Health, Safety and Environment GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  3. 3.Department of Geology, College of Engineering - GuindyAnna UniversityChennaiIndia
  4. 4.Department of Applied GeologyUniversity of Madras, Guindy CampusChennaiIndia
  5. 5.Department of Inorganic ChemistryUniversity of Madras, Guindy CampusChennaiIndia

Personalised recommendations