Advertisement

99mTc-radiolabeled imidazo[2,1-b]benzothiazole derivatives as potential radiotracers for glioblastoma

  • Sahar Nosrati
  • Sajjad Molavipordanjani
  • Saeed Emami
  • Seyed Mohammad Abedi
  • Fereshteh Talebpour Amiri
  • Seyed Jalal HosseinimehrEmail author
Article
  • 6 Downloads

Abstract

This study presents [99mTc]BPTG-1 and [99mTc]BPTG-2 for glioblastoma imaging. In vitro cellular uptakes of these radiotracers were examined in SKOV-3, MCF-7, U87-MG, HT-29, and A549 cell lines. U87-MG cell line displayed the highest radiotracers uptakes. Biodistribution study in U87-MG tumor bearing mice revealed higher uptake of radiotracers in tumor than muscle and brain. Liver, intestine, and kidneys displayed the highest radioactivity uptakes. The main route of radiotracers elimination was hepatobiliary. Due to the brain uptake of these radiotracers, they are promising radiotracers for future studies in the diagnosis of glioblastoma.

Keywords

Glioblastoma 99mTc Imaging Tumor U-87 MG Imidazobenzothiazole 

Notes

Acknowledgements

This work was supported by the Iran National Science Foundation (INSF) (Grant Number: 95836340) and Mazandaran University of Medical Sciences, Sari, Iran (Grant Number: 2745).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefGoogle Scholar
  2. 2.
    Dupont C, Betrouni N, Reyns N, Vermandel M (2016) On image segmentation methods applied to glioblastoma: state of art and new trends. IRBM 37:131–143CrossRefGoogle Scholar
  3. 3.
    Benezra M, Hambardzumyan D, Penate-Medina O, Veach DR, Pillarsetty N, Smith-Jones P, Phillips E, Ozawa T, Zanzonico PB, Longo V, Holland EC, Larson SM, Bradbury MS (2012) Fluorine-labeled dasatinib nanoformulations as targeted molecular imaging probes in a PDGFB-driven murine glioblastoma model. Neoplasia 14:1132–1143CrossRefGoogle Scholar
  4. 4.
    Frosina G (2016) Non-routine tracers for PET imaging of high-grade glioma. Anticancer Res 36:3253–3260PubMedGoogle Scholar
  5. 5.
    Solingapuram Sai KK, Prabhakaran J, Sattiraju A, Mann JJ, Mintz A, Kumar JSD (2017) Radiosynthesis and evaluation of IGF1R PET ligand [(11)C]GSK1838705A. Bioorg Med Chem Lett 27:2895–2897CrossRefGoogle Scholar
  6. 6.
    Szopa W, Burley TA, Kramer-Marek G, Kaspera W (2017) Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives. Biomed Res Int 2017:8013575CrossRefGoogle Scholar
  7. 7.
    Lapa C, Linsenmann T, Luckerath K, Samnick S, Herrmann K, Stoffer C, Ernestus RI, Buck AK, Lohr M, Monoranu CM (2015) Tumor-associated macrophages in glioblastoma multiforme—a suitable target for somatostatin receptor-based imaging and therapy? PLoS ONE 10:e0122269CrossRefGoogle Scholar
  8. 8.
    Osuka S, Van Meir EG (2017) Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest 127:415–426CrossRefGoogle Scholar
  9. 9.
    Bell C, Dowson N, Fay M, Thomas P, Puttick S, Gal Y, Rose S (2015) Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET: toward clinical translation. Semin Nucl Med 45:136–150CrossRefGoogle Scholar
  10. 10.
    Alexiou GA, Tsiouris S, Voulgaris S, Kyritsis AP, Fotopoulos AD (2012) Glioblastoma multiforme imaging: the role of nuclear medicine. Curr Radiopharm 5:308–313CrossRefGoogle Scholar
  11. 11.
    Herholz K, Langen KJ, Schiepers C, Mountz JM (2012) Brain tumors. Semin Nucl Med 42:356–370CrossRefGoogle Scholar
  12. 12.
    Gupta S, Dhanda S, Sandhir R (2019) Anatomy and physiology of blood-brain barrier. In: Gao H, Gao X (eds) Brain targeted drug delivery system. Academic Press, Cambridge, pp 7–31CrossRefGoogle Scholar
  13. 13.
    la Fougere C, Suchorska B, Bartenstein P, Kreth FW, Tonn JC (2011) Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol 13:806–819CrossRefGoogle Scholar
  14. 14.
    Salinas B, Irwin CP, Kossatz S, Bolaender A, Chiosis G, Pillarsetty N, Weber WA, Reiner T (2015) Radioiodinated PARP1 tracers for glioblastoma imaging. EJNMMI Res 5:123CrossRefGoogle Scholar
  15. 15.
    Caroline I, Rosenthal MA (2012) Imaging modalities in high-grade gliomas: pseudoprogression, recurrence, or necrosis? J Clin Neurosci 19:633–637CrossRefGoogle Scholar
  16. 16.
    Gulyas B, Halldin C (2012) New PET radiopharmaceuticals beyond FDG for brain tumor imaging. Q J Nucl Med Mol Imaging 56:173–190PubMedGoogle Scholar
  17. 17.
    Borght TV, Asenbaum S, Bartenstein P, Halldin C, Kapucu Ö, Van Laere K, Varrone A, Tatsch K (2011) Brain tumor imaging: European Association of Nuclear Medicine procedure guidelines. In: Hayat MA (ed) Methods of cancer diagnosis, therapy, and prognosis: brain cancer. Springer, Dordrecht, pp 9–19CrossRefGoogle Scholar
  18. 18.
    Ferda J, Ferdova E, Hes O, Mracek J, Kreuzberg B, Baxa J (2017) PET/MRI: multiparametric imaging of brain tumors. Eur J Radiol 94:A14–A25CrossRefGoogle Scholar
  19. 19.
    Saha GB, MacIntyre WJ, Go RT (1994) Radiopharmaceuticals for brain imaging. Semin Nucl Med 24:324–349CrossRefGoogle Scholar
  20. 20.
    Brantley E, Trapani V, Alley MC, Hose CD, Bradshaw TD, Stevens MF, Sausville EA, Stinson SF (2004) Fluorinated 2-(4-amino-3-methylphenyl)benzothiazoles induce CYP1A1 expression, become metabolized, and bind to macromolecules in sensitive human cancer cells. Drug Metab Dispos 32:1392–1401CrossRefGoogle Scholar
  21. 21.
    Tzanopoulou S, Sagnou M, Paravatou-Petsotas M, Gourni E, Loudos G, Xanthopoulos S, Lafkas D, Kiaris H, Varvarigou A, Pirmettis IC, Papadopoulos M, Pelecanou M (2010) Evaluation of Re and 99mTc complexes of 2-(4′-aminophenyl)benzothiazole as potential breast cancer radiopharmaceuticals. J Med Chem 53:4633–4641CrossRefGoogle Scholar
  22. 22.
    Molavipordanjani S, Emami S, Mardanshahi A, Talebpour Amiri F, Noaparast Z, Hosseinimehr SJ (2019) Novel 99mTc-2-arylimidazo[2,1-b]benzothiazole derivatives as SPECT imaging agents for amyloid-β plaques. Eur J Med Chem 175:149–161CrossRefGoogle Scholar
  23. 23.
    Ali AR, El-Bendary ER, Ghaly MA, Shehata IA (2014) Synthesis, in vitro anticancer evaluation and in silico studies of novel imidazo[2,1-b]thiazole derivatives bearing pyrazole moieties. Eur J Med Chem 75:492–500CrossRefGoogle Scholar
  24. 24.
    Kumbhare RM, Vijay Kumar K, Janaki Ramaiah M, Dadmal T, Pushpavalli SN, Mukhopadhyay D, Divya B, Anjana Devi T, Kosurkar U, Pal-Bhadra M (2011) Synthesis and biological evaluation of novel Mannich bases of 2-arylimidazo[2,1-b]benzothiazoles as potential anti-cancer agents. Eur J Med Chem 46:4258–4266CrossRefGoogle Scholar
  25. 25.
    Henary M, Paranjpe S, Owens EA (2013) Substituted benzothiazoles: synthesis and medicinal characteristics. Heterocycl Commun 19:89Google Scholar
  26. 26.
    Jena J (2014) Significance of benzothiazole moiety in the field of cancer. Int J Pharm Pharm Sci 6:16–22Google Scholar
  27. 27.
    Satpati D, Korde A, Sarma H, Banerjee S (2014) Synthesis and evaluation of a phenylbenzothiazole-based 99m Tc (CO) 3-radiotracer for possible application in imaging of β-amyloid plaques in Alzheimer’s disease. J Radioanal Nucl Chem 302:1339–1344CrossRefGoogle Scholar
  28. 28.
    Serdons K, Verduyckt T, Cleynhens J, Terwinghe C, Mortelmans L, Bormans G, Verbruggen A (2007) Synthesis and evaluation of a 99mTc-BAT-phenylbenzothiazole conjugate as a potential in vivo tracer for visualization of amyloid β. Bioorg Med Chem Lett 17:6086–6090CrossRefGoogle Scholar
  29. 29.
    Huang C, McConathy J (2013) Radiolabeled amino acids for oncologic imaging. J Nucl Med 54:1007–1010CrossRefGoogle Scholar
  30. 30.
    Hegde M, Vartak SV, Kavitha CV, Ananda H, Prasanna DS, Gopalakrishnan V, Choudhary B, Rangappa KS, Raghavan SC (2017) A benzothiazole derivative (5 g) induces DNA damage and potent G2/M arrest in cancer cells. Sci Rep 7:2533CrossRefGoogle Scholar
  31. 31.
    Bhuva HA, Kini SG (2010) Synthesis, anticancer activity and docking of some substituted benzothiazoles as tyrosine kinase inhibitors. J Mol Graph Model 29:32–37CrossRefGoogle Scholar
  32. 32.
    Aiello S, Wells G, Stone EL, Kadri H, Bazzi R, Bell DR, Stevens MF, Matthews CS, Bradshaw TD, Westwell AD (2008) Synthesis and biological properties of benzothiazole, benzoxazole, and chromen-4-one analogues of the potent antitumor agent 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610, NSC 721648). J Med Chem 51:5135–5139CrossRefGoogle Scholar
  33. 33.
    Youssef AM, Malki A, Badr MH, Elbayaa RY, Sultan AS (2012) Synthesis and anticancer activity of novel benzimidazole and benzothiazole derivatives against HepG2 liver cancer cells. Med Chem 8:151–162CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research CenterMazandaran University of Medical SciencesSariIran
  2. 2.Student Research Committee, Faculty of PharmacyMazandaran University of Medical SciencesSariIran
  3. 3.Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of PharmacyMazandaran University of Medical SciencesSariIran
  4. 4.Department of Radiology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
  5. 5.Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research CenterMazandaran University of Medical SciencesSariIran

Personalised recommendations