Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 3, pp 1365–1371 | Cite as

Elemental analysis of the geothermic microecology of the Los Azufres (Mexico) volcanic complex

  • Waleed A. Abuhani
  • Nabanita Dasgupta-SchubertEmail author
  • Jürgen Mattusch
  • Luis M. Villaseñor-Cendejas
  • Sheldon Landsberger
  • Steven Alexander
  • Ma. Guadalupe Garnica-Romo
Article
  • 19 Downloads

Abstract

Three geothermal microecologies, constituted of fumaroles, hydrothermal springs and the native volcanic superstratum at the Los Azufres (Mexico) volcanic complex, have been analysed for the concentrations of Cd, Hg, Pb, Th and U in the tissues and rhizospheric soils of the extremophilic plants that colonise the fumaroles, as well as in the sediments and volcanic stratum, using Polarised Energy Dispersive X-ray Fluorescence spectrometry and supplementarily, by Inductively Coupled Plasma Mass Spectrometry and Neutron Activation Analysis. The plants are found to sequester high concentrations of these heavy elements in their tissues and are more effective at their immobilization in the rhizosphere than are the hydrothermal chemistries for the sediment. Inferences are drawn regarding their roles in, in the biogeochemical recycling of these heavy elements in the Paleozoic era whose ecology these geothermal niches ‘mimic’, as well as their potential for phytoremediation.

Keywords

Heavy elements PEDXRF Geothermal Fumaroles Extremophilic plants Phytoremediation 

Notes

Acknowledgements

NDS thanks the grant funding she received from PROMEP – Secretaria de Educación Pública del Gobierno de México, that made this work eventually possible.

References

  1. 1.
    Abuhani WA et al (2015) Naturally occurring heavy radioactive elements in geothermal microcosm of the Los Azufres (Mexico) volcanic complex. J Environ Radioact 139:33–42CrossRefGoogle Scholar
  2. 2.
    Abuhani WA et al (2019) Heavy radioactive and translanthanide elements in the geothermal microecology of the Los Azufres volcanic complex. J Phys Conf Ser 1308:012001CrossRefGoogle Scholar
  3. 3.
    Suarez Arriaga MC et al (2000) Proceedings of the World Geothermal Congress, Kyushu Tohoku, Japan, May 28-June 10. https://pdfs.semanticscholar.org/b7db/ce576bb313811bf49cf197e3e2004d7e1b0f.pdf. Last accessed Sept 2019
  4. 4.
    Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Parnell J, Foster S (2012) Ordovician ash geochemistry and the establishment of land plants. Geochem Trans 13(1):7.  https://doi.org/10.1186/1467-4866-13-7 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Finney SC, Berry WBN (eds) (2010) The Ordovician earth system. The Geological Society of America Special Paper 466. ISBN 978-0-8137-2466-9Google Scholar
  7. 7.
    Ferrari L et al (1991) Geology of the Los Azufres caldera, Mexico, and its relationship with regional tectonics. J Volcanol Geotherm Res 47:129–148CrossRefGoogle Scholar
  8. 8.
    Brullo S et al (2001) Phytogeographical considerations on the furmarole bryoflora from the Mediterranean and Macaronesian areas. Bocconea 13:329–336Google Scholar
  9. 9.
    Costello EK et al (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on socompa volcano, Puna de Atacama, Andes. J Appl Environ Microbiol 75(3):735–747CrossRefGoogle Scholar
  10. 10.
    Convey P, Lewis Smith RL (2006) Geothermal bryophyte habitats in the South Sandwich Islands, maritime Antarctic. J Veg Sci 17(4):529–538CrossRefGoogle Scholar
  11. 11.
    Broady P et al (1987) The biota and environment of fumaroles on Mt Melbourne, northern Victoria Land. Polar Biol 7(2):97–113CrossRefGoogle Scholar
  12. 12.
    Abuhani WA (2013) Characterization of the elemental profiles in the bio-geosphere of the Los Azufres geothermal springs. Ph.D. thesis, Universidad Michoacana de San Nicolas de Hidalgo (unpublished)Google Scholar
  13. 13.
    Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  14. 14.
    Heckel J, Ryon RW (2002) Polarized beam X-ray fluorescence analysis. In: Van Griecken R, Markowicz A (eds) Handbook of X-ray spectreometry, 2nd edn. Marcel Dekker Inc., New York, pp 603–630Google Scholar
  15. 15.
    Abuhani WA et al (2014) Characterizing fundamental parameter-based analysis for soil–ceramic matrices in polarized energy-dispersive X-ray fluorescence (PEDXRF) spectrometry. Powder Diffr 29:159–169CrossRefGoogle Scholar
  16. 16.
    Saatz J et al (2015) The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants. Environ Pollut 204:32–38CrossRefGoogle Scholar
  17. 17.
    Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Waleed A. Abuhani
    • 1
    • 7
  • Nabanita Dasgupta-Schubert
    • 2
    Email author
  • Jürgen Mattusch
    • 3
  • Luis M. Villaseñor-Cendejas
    • 1
  • Sheldon Landsberger
    • 4
  • Steven Alexander
    • 5
  • Ma. Guadalupe Garnica-Romo
    • 6
  1. 1.Institute of Physics and Mathematics (IFM)University of Michoacan (Universidad Michoacana de San Nicolás de Hidalgo (UMSNH))MoreliaMexico
  2. 2.Department of Physics and Mathematics (FCFM)University of Michoacan (Universidad Michoacana de San Nicolás de Hidalgo (UMSNH))MoreliaMexico
  3. 3.Department AnalytikHelmholtz-Zentrum für Umweltforschung (UFZ)LeipzigGermany
  4. 4.Department of Mechanical and Nuclear EngineeringUniversity of TexasAustinUSA
  5. 5.Department of PhysicsSouthwestern UniversityGeorgetownUSA
  6. 6.Department of Civil Engineering (FIC)University of Michoacan (Universidad Michoacana de San Nicolás de Hidalgo (UMSNH))MoreliaMexico
  7. 7.Al Ghad University of Medical SciencesDammanSaudi Arabia

Personalised recommendations