Chemical characterization of soda-lime glass samples by in situ current normalised PIGE and conventional INAA methods for forensic applications

  • V. Sharma
  • R. AcharyaEmail author
  • S. K. Samanta
  • M. Goswami
  • H. K. Bagla
  • P. K. Pujari


Nuclear analytical methods namely in situ current normalised Particle Induced Gamma Ray Emission (PIGE) and conventional Instrumental Neutron Activation Analysis (INAA) were utilized for determining major, minor and trace concentrations of eighteen elements in five soda-lime (automobile) glass samples. Concentration of four major elements (Si, Na, Mg and Al) by PIGE and fourteen elements including ten trace elements by INAA were determined. For forensic application, major elements were used for confirming the class of glass samples, whereas concentration results of trace elements like transition and rare earth elements were utilized for finding similarity or differences among the glass samples.


Soda-lime glass Automobile glass PIGE INAA Trace element fingerprinting Forensic applications 



This work was carried out as a part of IAEA Co-ordinated Research Project (CRP) on “Enhancing Nuclear Analytical Techniques to Meet the Needs of Forensic Sciences (CRPCode: F11021)”. Authors are thankful to Dr. S. Krishnagopal, Head IADD, Mr. A. Aggarwal, OIC, FOTIA, and FOTIA operation crews as well as operation crews of Dhruva research reactor, BARC for their cooperation during sample irradiation. Authors are thankful to Mr. K.C. Jagdeesan, RPhD, BARC for his help. Mr. V. Sharma, JRF in K.C. College & RCD, BARC collaborative project, is thankful to CSIR, New Delhi for the fellowship and financial assistance and Head, RCD, BARC for the support. Dr. Hemlata K. Bagla, Principal, K.C. College, Mumbai is thankful to UGC-DAE CSR, Mumbai Centre for the project and financial support. This work is part of PhD thesis in Chemistry of Mr. V. Sharma under University of Mumbai.


  1. 1.
    Trejos T, Almirall JR (2005) Sampling strategies for the analysis of glass fragments by LAICP-MS Part I. Micro-homogeneity study of glass and its application to the interpretation of forensic evidence. Talanta 67:388–395CrossRefGoogle Scholar
  2. 2.
    Latkoczy C, Becker S, Dücking M, Günther D, Hoogewerff J, Almirall JR, Buscaglia J, Dobney A, Koons R, Montero S, van der Peijl GJQ, Stoecklein WRS, Trejos T, Watling JR, Zdanowicz V (2005) Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS. J For Sci 50:1327–1341Google Scholar
  3. 3.
    Tamilarasu S, Velraj G, Ray DK, Acharya R (2016) Chemical analysis of archaeological clay potteries by PIGE and PIXE methods using proton beams from tandem accelerator for provenance study. J Radioanal Nucl Chem 310:363–370CrossRefGoogle Scholar
  4. 4.
    Dasari KB, Acharya R, Ray DK, Lakshmana Das N (2017) Application of PIXE for the determination of transition elements in the grouping study of archaeological clay potteries. X-Ray Spectrom 46:180–185CrossRefGoogle Scholar
  5. 5.
    Gratuze B, Janssens K (2004) Provenance analysis of glass artefacts. In: Janssens and Van Grieken (eds) Comprehensive analytical chemistry XI. II, Chapter 15, vol 42. pp 663–712Google Scholar
  6. 6.
    Orellana FA, Galvez CG, Roldan MT, Garcia-Ruiz C (2013) Applications of laser-ablation-inductively-coupled plasma mass spectrometry in chemical analysis of forensic eviedence. Trends Anal Chem 42:1–34CrossRefGoogle Scholar
  7. 7.
    Civici N, Vataj E (2013) Analysis of automotive glass of various brands using EDXRF spectrometry. Roman Rep Phys 65:1265Google Scholar
  8. 8.
    Frana J, Mastalka A, Vanclova N (1987) Neutron activation analysis of some ancient glasses from bohemia. Archaeometry 29(1):69–89CrossRefGoogle Scholar
  9. 9.
    Hughes JC, Catterick T, Southeard G (1976) The analysis of glass by atomic absorbance spectroscopy. Forensic Sci 8:217–227CrossRefGoogle Scholar
  10. 10.
    Smita Z, Milavecc T, Fajfarb H, Rehrend Th, Lanktone JW, Gratuze B (2013) Analysis of glass from the post-Roman settlement Tonovcov grad (Slovenia) by PIXE–PIGE and LA-ICP-MS. Nucl Instrum Methods B 311:53–59CrossRefGoogle Scholar
  11. 11.
    Trejos T, Montero S, Almirall JR (2003) Analysis and comparison of glass fragments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and ICP-MS. Anal Bioanal Chem 376:1255–1264CrossRefGoogle Scholar
  12. 12.
    Smith K, Trejos T, Watling RJ, Almirall J (2006) A guide for the quantitative elemental analysis of glass using laser ablation inductively coupled plasma mass spectrometry. At Spectrosc 27:69–75Google Scholar
  13. 13.
    Montero S (2005) Forensic float-glass analysis using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). In: Method validation–NFI scientific report, vol 8Google Scholar
  14. 14.
    Henderson J (1988) Electron probe microanalysis of mixed-alkali glasses. Archaeometry 30(1):77–91CrossRefGoogle Scholar
  15. 15.
    Kuisma-Kursula P (2000) Accuracy, precision and detection limits of SEM-WDS, SEM-EDS and PIXE in multi-elemental analysis of medieval glass. X-Ray Spectrom 29:111–118CrossRefGoogle Scholar
  16. 16.
    Brozel-Mucha Z, Zadora G (1998) Differentiating between various types of glass using SEM-EDX elemental analysis: a preliminary study. Probl Forensic Sci 37:68–89Google Scholar
  17. 17.
    Roedel TC, Bronk H, Haschke M (2003) Investigation of the influence of particle size on the quantitative analysis of glasses by energy dispersive micro x ray fluorescence spectrometry. X-Ray Spectrom 31:16–26CrossRefGoogle Scholar
  18. 18.
    Carmona N, Ortega-Feliu I, Gómez-Tubío B, Villegas MA (2010) Advantages and disadvantages of PIXE/PIGE, XRF and EDX spectrometries applied to archaeometric characterization of glasses. Mater Charact 61:257–267CrossRefGoogle Scholar
  19. 19.
    Coleman R, Goode G (1973) Comparison of glass fragments by neutron activation analysis. J Radioanal Chem 15:367–388CrossRefGoogle Scholar
  20. 20.
    Smit Z, Tartari F, Stamati F, Vevecka PriftajA, Istenic J (2013) Analysis of Roman glass from Albania by PIXE–PIGE method. Nucl Instrum Methods B 296:7–13CrossRefGoogle Scholar
  21. 21.
    Chhillar S, Acharya R, Mishra RK, Kaushik CP, Pujari PK (2017) Simultaneous determination of low Z elements in barium borosilicate glass samples by in situ current normalized particle induced gamma-ray emission methods. J Radioanal Nucl Chem 312:567–576CrossRefGoogle Scholar
  22. 22.
    Dasari KB, Chhillar S, Acharya R, Ray DK, Behera A, Lakshmana Das N, Pujari PK (2014) Simultaneous determination of Si, Al and Na concentrations by particle induced gamma-ray emission and applications to reference materials and ceramic archaeological artifacts. Nucl Instrum Methods B 339:37–41CrossRefGoogle Scholar
  23. 23.
    Chhillar S, Acharya R, Sodaye S, Sudarshan K, Santra S, Mishra RK, Kaushik CP, Choudhury RK, Pujari PK (2012) Application of particle induced gamma-ray emission for non-destructive determination of fluorine in barium borosilicate glass samples. J Radioanal Nucl Chem 294:115–119CrossRefGoogle Scholar
  24. 24.
    Sudarshan K, Tripathi R, Acharya R, Nair AGC, Reddy AVR, Goswami A (2014) Application of k0-based internal mono-standard PGNAA for compositional characterization of cement samples. J Radioanal Nucl Chem 300:1075–1080CrossRefGoogle Scholar
  25. 25.
    Chhillar S, Acharya R, Sodaye S, Pujari PK (2014) Development of particle induced gamma-Ray emission methods for non-destructive determination of isotopic composition of boron and its total concentration in natural and enriched samples. Anal Chem 8:11167–11173CrossRefGoogle Scholar
  26. 26.
    Dhorge PS, Acharya R, Rajurkar NS, Chahar V, Tuli V, Srivastava A, Pujari PK (2017) Quantification of trace fluorine concentrations in soil and food samples from fluoride affected region by in situ current normalized Particle Induced Gamma-ray Emission method. J Radioanal Nucl Chem 311:1803–1809CrossRefGoogle Scholar
  27. 27.
    Chhillar S, Acharya R, Tripathi R, Sodaye S, Sudarshan K, Rout PC, Mukerjee SK, Pujari PK (2015) Compositional characterization of lithium titanate ceramic samples by determining Li, Ti and O concentrations simultaneously using PIGE at 8 MeV proton beam. J Radioanal Nucl Chem 305:463–467CrossRefGoogle Scholar
  28. 28.
    Savidou A, Aslanoglou X, Paradellis T, Pilakouta M (1999) Proton induced thick target γ-ray yields of light nuclei at the energy region E p = 1.0–4.1 MeV. Nucl Instrum Methods B 152:12–18CrossRefGoogle Scholar
  29. 29.
    Dasari KB, Acharya R, Swain KK, Lakshmana Das N, Reddy AVR (2010) Analysis of large and non-standard geometry samples of ancient potteries by internal monostandard NAA using in situ detection efficiency. J Radioanal Nucl Chem 286:525–531CrossRefGoogle Scholar
  30. 30.
    Dasari KB, Acharya R, Lakshmana Das N, Reddy AVR (2012) A standardless approach of INAA for grouping study of ancient potteries. J Radioanal Nucl Chem 294:429CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • V. Sharma
    • 1
    • 2
  • R. Acharya
    • 1
    • 4
    Email author
  • S. K. Samanta
    • 1
  • M. Goswami
    • 3
  • H. K. Bagla
    • 2
  • P. K. Pujari
    • 1
    • 4
  1. 1.Radiochemistry DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia
  2. 2.Department of Nuclear and RadiochemistryK.C. CollegeChurchgate, MumbaiIndia
  3. 3.Glass and Advanced Ceramics DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia
  4. 4.Department of Atomic EnergyHomi Bhabha National InstituteAnushakti Nagar, MumbaiIndia

Personalised recommendations