Advertisement

A facile synthesis of hierarchically porous Cu-BTC for efficient removal of uranium(VI)

  • Chongxiong Duan
  • Jiexin Li
  • Pengfei YangEmail author
  • Guojun Ke
  • Chunxia Zhu
  • Senlin Zhang
Article
  • 22 Downloads

Abstract

Metal–organic frameworks (MOFs) are promising adsorbents for extraction of uranium(VI) due to their high surface area and abundant active site. However, the smaller pore size (< 2 nm) and harsh synthesis conditions (e.g., high temperature and pressure) severely hinder MOFs practical applications in some cases. Herein, we developed a simple and facile method to prepare hierarchically porous Cu-BTC that contained micropores, mesopores and macropores. The as-synthesized hierarchically porous Cu-BTC showed high uptake capacity (406.9 mg g−1) and removal efficiency (99.7%) in the capture of uranium(VI) from an aqueous solution. Thermodynamics results indicate the spontaneous nature of uranium(VI) adsorption process onto hierarchically porous Cu-BTC. In addition, Langmuir isotherm and pseudo-second-order models were found to be more suitable in describing the adsorption process of uranium(VI) than those of Freundlich and pseudo-first-order models. These results indicate that hierarchically porous MOFs obtained from rapid room-temperature synthesis are promising adsorbents for the removal of uranium(VI) from aqueous solutions.

Keywords

Hierarchically porous Cu-BTC Facile synthesis Uranium(VI) removal High uptake and removal efficiency 

Notes

Author contributions

CD and JL conceived and designed the study; CD, JL, WQ and CZ, performed the experiment and analyzed the data; PY provided critical feedback and helped shape the research; CD wrote the final version of the manuscript.

Funding

This research was funded by the Natural Science Foundation of Hunan Province (Grant No. 2019JJ60003).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Dolatyari L, Yaftian MR, Rostamnia S, Seyeddorraji MS (2017) Multivariate optimization of a functionalized SBA-15 mesoporous based solid-phase extraction for U(VI) determination in water samples. Anal Sci 33:769–776PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sun Q, Aguila B, Ma S (2019) Opportunities of porous organic polymers for radionuclide sequestration. Trends Chem 1:292–303CrossRefGoogle Scholar
  3. 3.
    Yuan D, Zhang C, Tang S, Li X, Tang J, Rao Y, Wang Z, Zhang Q (2019) Enhancing CaO2 fenton-like process by Fe(II)-oxalic acid complexation for organic wastewater treatment. Water Res 163:114861PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Kang L, Du HL, Du X, Wang HT, Ma WL, Wang ML, Zhang FB (2018) Study on dye wastewater treatment of tunable conductivity solid-waste-based composite cementitious material catalyst. Desalination Water Treat 125:296–301CrossRefGoogle Scholar
  5. 5.
    Chen H, Zhang S, Zhao Z, Liu M, Zhang Q (2019) Application of dopamine functional materials in water pollution control. Prog Chem 31:571–579Google Scholar
  6. 6.
    Dickinson M, Scott TB (2010) The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 178:171–179PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kim KW, Hyun JT, Lee KY, Lee EH, Lee KW, Song KC, Moon JK (2011) Effects of the different conditions of uranyl and hydrogen peroxide solutions on the behavior of the uranium peroxide precipitation. J Hazard Mater 193:52–58PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Ladeira AC, Goncalves CR (2007) Influence of anionic species on uranium separation from acid mine water using strong base resins. J Hazard Mater 148:499–504PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134:16441–16446PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hoyer M, Zabelt D, Steudtner R, Brendler V, Haseneder R, Repke J-U (2014) Influence of speciation during membrane treatment of uranium contaminated water. Sep Purif Technol 132:413–421CrossRefGoogle Scholar
  11. 11.
    Zaoui F, Didi MA, Villemin D (2012) Investigation of 7-((dioctylamino)methyl)quinoline-8-ol for uptake and removal of uranyl ions. J Radioanal Nucl Chem 295:419–424CrossRefGoogle Scholar
  12. 12.
    Wang X, Peng G, Yang Y, Wang Y, He T (2011) Uranium adsorption by dry and wet immobilized Saccharomyces cerevisiae. J Radioanal Nucl Chem 291:825–830CrossRefGoogle Scholar
  13. 13.
    Zhang Z-B, Liu Y-H, Cao X-H, Liang P (2012) Sorption study of uranium on carbon spheres hydrothermal synthesized with glucose from aqueous solution. J Radioanal Nucl Chem 295:1775–1782CrossRefGoogle Scholar
  14. 14.
    Zhu J, Luo J (2018) Effects of entanglements and finite extensibility of polymer chains on the mechanical behavior of hydrogels. Acta Mech 229:1703–1719CrossRefGoogle Scholar
  15. 15.
    Shabtai IA, Mishael YG (2018) Polycyclodextrin–clay composites: regenerable dual-site sorbents for bisphenol a removal from treated wastewater. ACS Appl Mater Interfaces 10:27088–27097PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Carniato F, Bisio C, Evangelisti C, Psaro R, Dal Santo V, Costenaro D, Marchese L, Guidotti M (2018) Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents. Dalton Trans 47:2939–2948PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gun’ko VM, Matkovsky AK, Charmas B, Skubiszewska-Zięba J, Pasieczna-Patkowska S (2017) Carbon–silica gel adsorbents. J Therm Anal Calorim 128:1683–1697CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Liu C, Feng M, Chen Z, Li S, Tian G, Wang L, Huang J, Li S (2010) Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon. J Hazard Mater 176:119–124PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Xia G-T, Li C, Wang K, Li L-W (2019) Structural design and electrochemical performance of PANI/CNTs and MnO2/CNTs supercapacitor. Sci Adv Mater 11:1079–1086CrossRefGoogle Scholar
  20. 20.
    Kai W, Liwei L, Wen X, Shengzhe Z, Yong L, Hongwei Z, Zongqiang S (2017) Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance. Int J Electrochem Sci 12:8306–8314CrossRefGoogle Scholar
  21. 21.
    Bakatula EN, Molaudzi R, Nekhunguni P, Tutu H (2017) The removal of arsenic and uranium from aqueous solutions by sorption onto iron oxide-coated zeolite (IOCZ). Water Air Soil Pollut 228:5.  https://doi.org/10.1007/s11270-016-3190-7 CrossRefGoogle Scholar
  22. 22.
    Vidya K, Dapurkar SE, Selvam P, Badamali SK, Gupta NM (2001) The entrapment of UO22+ in mesoporous MCM-41 and MCM-48 molecular sieves. Microporous Mesoporous Mater 50:173–179.  https://doi.org/10.1016/S1387-1811(01)00445-0 CrossRefGoogle Scholar
  23. 23.
    Zhang Q, Bolisetty S, Cao Y, Handschin S, Adamcik J, Peng Q, Mezzenga R (2019) Selective and efficient removal of fluoride from water: in situ engineered amyloid fibril/ZrO2 hybrid membranes. Angew Chem Int Ed 58:6012–6016CrossRefGoogle Scholar
  24. 24.
    Duan C, Li F, Li L, Zhang H, Wang X, Xiao J, Xi H (2018) Hierarchically structured metal–organic frameworks assembled by hydroxy double salt-template synergy with high space-time yields. CrystEngComm 20:1057–1064CrossRefGoogle Scholar
  25. 25.
    Duan C, Li F, Yang M, Zhang H, Wu Y, Xi H (2018) Rapid synthesis of hierarchically structured multifunctional metal–organic zeolites with enhanced volatile organic compounds adsorption capacity. Ind Eng Chem Res 57:15385–15394.  https://doi.org/10.1021/acs.iecr.8b04028 CrossRefGoogle Scholar
  26. 26.
    Yang G, Wang J, Zhang H, Jia H, Zhang Y, Gao F (2019) Applying bio-electric field of microbial fuel cell-upflow anaerobic sludge blanket reactor catalyzed blast furnace dusting ash for promoting anaerobic digestion. Water Res 149:215–224PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zhang L, Wang LL, Le Gong L, Feng XF, Luo MB, Luo F (2016) Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of U(VI) ions. J Hazard Mater 311:30–36PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Liu S, Luo M, Li J, Luo F, Ke L, Ma J (2016) Adsorption equilibrium and kinetics of uranium onto porous azo-metal–organic frameworks. J Radioanal Nucl Chem 310:353–362CrossRefGoogle Scholar
  29. 29.
    Zhang X, Liu Y, Jiao Y, Gao Q, Yan X, Yang Y (2018) Facile construction of Fe@zeolite imidazolate Framework-67 to selectively remove uranyl ions from aqueous solution. J Taiwan Inst Chem Eng 91:309–315CrossRefGoogle Scholar
  30. 30.
    Duan C, Zhang H, Li F, Xiao J, Luo S, Xi H (2018) Hierarchically porous metal–organic frameworks: rapid synthesis and enhanced gas storage. Soft Matter 14:9589–9598PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zhang D, Zhang H, Zhao S, Li Z, Hou S (2019) Electrochemical impedance spectroscopy evaluation of corrosion protection of X65 carbon steel by halloysite nanotube-filled epoxy composite coatings in 3.5% NaCl solution. Int J Electrochem Sci 14:4659–4667CrossRefGoogle Scholar
  32. 32.
    Duan C, Cao Y, Hu L, Fu D, Ma J, Youngblood J (2019) An efficient mechanochemical synthesis of alpha-aluminum hydride: synergistic effect of TiF3 on the crystallization rate and selective formation of alpha-aluminum hydride polymorph. J Hazard Mater 373:141–151PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Yin K, Yang S, Dong X, Chu D, Gong X, Duan J-A (2019) Femtosecond laser fabrication of shape-gradient platform: underwater bubbles continuous self-driven and unidirectional transportation. Appl Surf Sci 471:999–1004CrossRefGoogle Scholar
  34. 34.
    Duan C, Li F, Xiao J, Liu Z, Li C, Xi H (2017) Rapid room-temperature synthesis of hierarchical porous zeolitic imidazolate frameworks with high space-time yield. Sci China Mater 60:1205–1214CrossRefGoogle Scholar
  35. 35.
    Li H, Shin K, Henkelman G (2018) Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J Chem Phys 149:174705PubMedCrossRefGoogle Scholar
  36. 36.
    Li H, Guo S, Shin K, Wong MS, Henkelman G (2019) Design of a Pd–Au nitrite reduction catalyst by identifying and optimizing active ensembles. ACS Catal 9:7957–7966CrossRefGoogle Scholar
  37. 37.
    Zhou Y, Huang Y, Pang J, Wang K (2019) Remaining useful life prediction for supercapacitor based on long short-term memory neural network. J Power Sources 440:227149CrossRefGoogle Scholar
  38. 38.
    Duan C, Huo J, Li F, Yang M, Xi H (2018) Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks by a versatile cooperative template strategy. J Mater Sci 53:16276–16287CrossRefGoogle Scholar
  39. 39.
    Zhu J, Qi L, Liu J, Chen R, Zhang H, Zhang M, Liu P, Li R, Wang J (2018) Investigation of uranium(VI) adsorption by poly(dopamine) functionalized waste paper derived carbon. J Taiwan Inst Chem Eng 91:266–273CrossRefGoogle Scholar
  40. 40.
    Xu Y, Ke G, Yin J, Lei W, Yang P (2019) Synthesis of thiol-functionalized hydrotalcite and its application for adsorption of uranium(VI). J Radioanal Nucl Chem 319:791–803CrossRefGoogle Scholar
  41. 41.
    Alqadami AA, Naushad M, Alothman ZA, Ghfar AA (2017) Novel metal–organic framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment. ACS Appl Mater Interfaces 9:36026–36037PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chongxiong D, Hang Z, Anguo P, Feier L, Jing X, JiFei Z, Shaojuan L, Hongxia X (2018) Synthesis of hierarchically structured metal–organic frameworks by a dual-functional surfactant. ChemistrySelect 3:5313–5320CrossRefGoogle Scholar
  43. 43.
    Xie Y, Yu Z, Huang X, Wang Z, Niu L, Teng M, Li J (2007) Rational design of MOFs constructed from modified aromatic amino acids. Chemistry 13:9399–9405PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manag 169:8–17CrossRefGoogle Scholar
  45. 45.
    Watanabe S, Sugiyama H, Miyahara M (2008) Molecular simulation of condensation process of Lennard–Jones fluids confined in nanospace with jungle-gym structure. Adsorption 14:165–170CrossRefGoogle Scholar
  46. 46.
    Wang C, Zheng T, Luo R, Liu C, Zhang M, Li J, Sun X, Shen J, Han W, Wang L (2018) In situ growth of ZIF-8 on PAN fibrous filters for highly efficient U(VI) removal. ACS Appl Mater Interfaces 10:24164–24171PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zhu J, Liu Q, Li Z, Liu J, Zhang H, Li R, Wang J (2018) Efficient extraction of uranium from aqueous solution using an amino-functionalized magnetic titanate nanotubes. J Hazard Mater 353:9–17PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ibrahim ME, Lasheen TA, Hassib HB, Helal AS (2014) Separation and extraction of uranium from leach liquor containing uranium and molybdenum by solvent extraction with LIX 622N. J Dispers Sci Technol 35:599–606CrossRefGoogle Scholar
  49. 49.
    Li JQ, Gong LL, Feng XF, Zhang L, Wu HQ, Yan CS, Xiong YY, Gao HY, Luo F (2017) Direct extraction of U(VI) from alkaline solution and seawater via anion exchange by metal–organic framework. Chem Eng J 316:154–159CrossRefGoogle Scholar
  50. 50.
    Liu H, Wang R, Jiang H, Gong H, Wu X (2015) Study on adsorption characteristics of uranyl ions from aqueous solutions using zirconium hydroxide. J Radioanal Nucl Chem 308:213–220CrossRefGoogle Scholar
  51. 51.
    Li L, Ma W, Shen S, Huang H, Bai Y, Liu H (2016) A combined experimental and theoretical study on the extraction of uranium by amino-derived metal–organic frameworks through post-synthetic strategy. ACS Appl Mater Interfaces 8:31032–31041PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Feng Y, Jiang H, Li S, Wang J, Jing X, Wang Y, Chen M (2013) Metal–organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids Surf A 431:87–92CrossRefGoogle Scholar
  53. 53.
    Shao L, Wang X, Ren Y, Wang S, Zhong J, Chu M, Tang H, Luo L, Xie D (2016) Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal. Chem Eng J 286:311–319CrossRefGoogle Scholar
  54. 54.
    Abdi S, Nasiri M, Mesbahi A, Khani MH (2017) Investigation of uranium(VI) adsorption by polypyrrole. J Hazard Mater 332:132–139PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Feng Y, Ma B, Guo X, Sun H, Zhang Y, Gong H (2018) Preparation of amino-modified hydroxyapatite and its uranium adsorption properties. J Radioanal Nucl Chem 319:437–446CrossRefGoogle Scholar
  56. 56.
    Zhao W, Lin X, Cai H, Mu T, Luo X (2017) Preparation of mesoporous carbon from sodium lignosulfonate by hydrothermal and template method and its adsorption of uranium(VI). Ind Eng Chem Res 56:12745–12754CrossRefGoogle Scholar
  57. 57.
    Cai H, Lin X, Qin Y, Luo X (2016) Hydrothermal synthesis of carbon microsphere from glucose at low temperature and its adsorption property of uranium(VI). J Radioanal Nucl Chem 311:695–706CrossRefGoogle Scholar
  58. 58.
    Wen J, Li Q, Li H, Chen M, Hu S, Cheng H (2018) Nano-TiO2 imparts amidoximated wool fibers with good antibacterial activity and adsorption capacity for uranium(VI) recovery. Ind Eng Chem Res 57:1826–1833CrossRefGoogle Scholar
  59. 59.
    Xue G, Yurun F, Li M, Dezhi G, Jie J, Jincheng Y, Haibin S, Hongyu G, Yujun Z (2017) Phosphoryl functionalized mesoporous silica for uranium adsorption. Appl Surf Sci 402:53–60CrossRefGoogle Scholar
  60. 60.
    Long W, Liu H, Yan X, Fu L (2018) Preparation of new nano magnetic material Fe3O4@g-C3N4 and good adsorption performance on uranium ion. IOP Conf Ser Mater Sci Eng 322Google Scholar
  61. 61.
    Yang P, Liu Q, Liu J, Zhang H, Li Z, Li R, Liu L, Wang J (2017) Bovine serum albumin-coated graphene oxide for effective adsorption of uranium(VI) from aqueous solutions. Ind Eng Chem Res 56:3588–3598CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyangChina
  2. 2.School of Materials Science and Energy EngineeringFoshan UniversityFoshanChina
  3. 3.Hunan Key Laboratory for the Design and Application of Actinide ComplexesHengyangChina

Personalised recommendations