Analysis of meteorite samples using PIXE technique

  • J. ZemanEmail author
  • M. Ješkovský
  • J. Kaizer
  • J. Pánik
  • I. Kontuľ
  • J. Staníček
  • P. P. Povinec


A non-destructive approach to the sample treatment during the analytical process is one of the crucial advantages of the particle induced X-ray emission technique. Rare and precious environmental and space samples can be analyzed in order to evaluate concentrations of individual elements presented in specimens. A non-destructive analysis of two meteorite samples was carried out using 3 MeV protons incident in a narrow ion beam (1.5 mm diam.). GUPIXWIN software package was used for spectra evaluation. Concentrations of several elements (Fe, Ni, Cu and Zn) were determined and quantitative surface elemental distribution maps were constructed.


PIXE Meteorite Proton beam Distribution maps Absolute concentration 



The authors are acknowledging the support provided by the EU Research and Development Operational Program funded by the ERDF (Projects # 26240120012 and 26240120026), and from the International Atomic Energy Agency (Project # SLR-1001). This study has also been supported by the VEGA Scientific Granting Agency of Slovakia (Projects 1/0891/17 and 1/0783/14).


  1. 1.
    Nastasi M, Mayer JW, Wang Y (2015) Ion beam analysis: fundamentals and applications. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Rojkovič I, Porubčan V, Siman P (1995) Nález meteoritu pri obci Rumanová. Miner Slovaca 27(4):331–342Google Scholar
  3. 3.
    Rojkovič I, Siman P, Porubčan V (1997) Rumanová H5 chondrite, Slovakia. Meteorit Planet Sci 32:A151–A153CrossRefGoogle Scholar
  4. 4.
    Lipka J, Rojkovič I, Tóth I, Seberíni M (1997) First Mössbauer study of the slovak meteorite rumanova. Czech J Phys. CrossRefGoogle Scholar
  5. 5.
    Lipka J, Sitek J, Dekan J, Sedláčková K (2014) Analyses of Rumanová meteorite. Hyperfine Interact. CrossRefGoogle Scholar
  6. 6.
    Kaizer J, Kučera J, Kameník J, Porubčan V, Povinec PP (2017) Determination of elemental content in the Rumanová, Uhrovec, Veľké Borové, Košice and Chelyabinsk chondrites by instrumental neutron activation analysis. J Radioanal Nucl Chem 311:2085–2096CrossRefGoogle Scholar
  7. 7.
    Artemieva N, Pierazzo E (2011) The Canyon Diablo impact event: 2. Projectile fate and target melting upon impact. Meteorit Planet Sci 46(6):805–829CrossRefGoogle Scholar
  8. 8.
    Carter NL, Kennedy GC (1966) Origin of diamonds in the Canyon Diablo and Novo Urei meteorites—a reply. J Geophys Res. CrossRefGoogle Scholar
  9. 9.
    Vdovykin GP (1973) The Canyon Diablo meteorite. Space Sci Rev 14:758–831Google Scholar
  10. 10.
    Wasson JT, Ouyang X (1990) Compositional range in the Canyon Diablo meteoroid. Geochim Cosmochim Acta. CrossRefGoogle Scholar
  11. 11.
    Povinec PP, Masarik J, Sýkora I, Kovačik A, Beňo J, Laubenstein M, Porubčan V (2015) Cosmogenic radionuclides in the Košice meteorite: experimental investigations and Monte Carlo simulations. Meteorit Planet Sci 50:880–892CrossRefGoogle Scholar
  12. 12.
    Zeman et al (2017) PIXE beam line at the CENTA facility of the Comenius university in Bratislava: first results. J Radioannal Nucl Chem 311:1409–1415CrossRefGoogle Scholar
  13. 13.
    Povinec PP (2018) New ultra-sensitive radioanalytical technologies for new science. J Radioanal Nucl Chem 316(3):893–931CrossRefGoogle Scholar
  14. 14.
    Povinec PP, Sýkora I, Porubčan V, Ješkovský M (2009) Analysis of 26Al in meteorite samples by coincidence gamma-ray spectrometry. J Radioanal Nucl Chem 282(3):805–808CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics, Physics and Informatics, Centre for Nuclear and Accelerator Technologies (CENTA)Comenius UniversityBratislavaSlovakia
  2. 2.Faculty of Medicine, Institute of Medical Physics, Biophysics, Informatics and TelemedicineComenius UniversityBratislavaSlovakia

Personalised recommendations