Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 3, pp 1711–1718 | Cite as

Production of 47Sc with natural vanadium targets: results of the PASTA project

  • Gaia PupilloEmail author
  • Liliana Mou
  • Alessandra Boschi
  • Simone Calzaferri
  • Luciano Canton
  • Sara Cisternino
  • Lucia De Dominicis
  • Adriano Duatti
  • Andrea Fontana
  • Férid Haddad
  • Petra Martini
  • Micòl Pasquali
  • Hanna Skliarova
  • Juan Esposito


The goal of PASTA project (acronym for production with accelerator of 47Sc for theranostic applications) is the determination of excitation functions associated to several nuclear reactions, aimed at yielding the theranostic radionuclide 47Sc. This work reports the main results obtained by irradiating natural vanadium targets with proton beams up to 70 MeV. Particular care is also given to the co-production of 46Sc, the only isotopic contaminant with half-life longer than 47Sc. Experimental results are compared with theoretical studies by means of known nuclear reaction software tools that are publicly available.


47Sc Theranostic radionuclides Proton-induced reactions Cyclotron-induced reactions 46Sc Nuclear reaction codes 



The authors thanks Dr. R. Capote, Dr. M. W. Herman, and Dr. Carlos Rossi Alvarez for private communications and the enlightening scientific discussion. This work has been partially supported by EU Horizon 2020 Project RIA-ENSAR2 (654 02) and by a Grant from the French National Agency for Research called “Investissements d’Avenir”, Equipex Arronax-Plus noANR-11-EQPX-0004, Labex IRON noANR-11-LABX-18-01 and noANR-16-IDEX-0007.


Funding was provided by Istituto Nazionale di Fisica Nucleare CSN5 with the Grant PASTA (Bando Giovani Ricercatori No. 18203).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Qaim SM, Scholten B, Neumaier B (2018) J Radioanal Nucl Chem. CrossRefGoogle Scholar
  2. 2.
    IAEA, CRP on therapeutic radiopharmaceuticals labelled with new emerging radionuclides (67Cu, 186Re, 47Sc), No. F22053, 2016-2020.
  3. 3.
    Müller C, Domnanich KA, Umbricht CA, Van Der Meulen NP (2018) Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical applications. Br J Radiol. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Champion C, Quinto MA, Morgat C, Zanotti-Fregonara P, Hindié E (2016) Comparison between three promising ß-emitting radionuclides, 67Cu, 47Sc and 161Tb, with emphasis on doses delivered to minimal residual disease. Theranostics. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Boschi A, Martini P, Costa V, Pagnoni A, Uccelli L (2019) Interdisciplinary tasks in the cyclotron production of radiometals for medical applications. The case of 47Sc as example. Molecules. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Huclier-Markai S, Alliot C, Kerdjoudj R, Mougin-Degraef M, Chouin N, Haddad F (2018) Promising scandium radionuclides for nuclear medicine: a review on the production and chemistry up to in vivo proofs of concept. Cancer Biother Radio. CrossRefGoogle Scholar
  7. 7.
    Esposito J et al (2019) LARAMED: a laboratory for radioisotopes of medical interest. Molecules. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Haddad F et al (2008) ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine. Nucl Med Mol Imaging. CrossRefGoogle Scholar
  9. 9.
    Koning AJ, Hilarie S, Duijvesijn MC (2008) TALYS.1.0. In: Proceeding of the international conference on nuclear data for science and technology, April 22–27, 2007, Nice, France, EDP Sciences, p 211Google Scholar
  10. 10.
    Herman M et al (2007) EMPIRE: nuclear reaction model code system for data evaluation. Nucl Data Sheets 108:2655CrossRefGoogle Scholar
  11. 11.
    Boehlen TT et al (2014) The FLUKA code: developments and challanges for high energy and medical applications. Nucl Data Sheets 120:211CrossRefGoogle Scholar
  12. 12.
    Pupillo G et al (2018) New production cross sections for the theranostic radionuclide 67Cu. Nuclear Instr Methods Phys Res B. CrossRefGoogle Scholar
  13. 13.
    IAEA Monitor Reactions (2017) Accessed Mar 2019
  14. 14.
    Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM—the stopping and range of ions in matter. Nuclear Instr Methods Phys Res B 268:1818–1823CrossRefGoogle Scholar
  15. 15.
    Otuka N et al (2017) Uncertainty propagation in activation cross section measurements. Radiat Phys Chem. CrossRefGoogle Scholar
  16. 16.
    National Nuclear Data Center (NNDC), NuDat 2.7 database. Accessed Mar 2019
  17. 17.
    Experimental Nuclear Reaction Data (EXFOR). Accessed Mar 2019
  18. 18.
    Duchemin C, Guertin A, Haddad F, Michel N, Métivier V (2015) Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV. Phys Med Biol. CrossRefPubMedGoogle Scholar
  19. 19.
    Koning AJ, Delaroche JP (2003) Local and global nucleon optical models from 1 keV to 200 MeV. Nucl Phys A 713:231CrossRefGoogle Scholar
  20. 20.
    Avrigeanu V, Hodgson PE, Avrigeanu M (1994) Global optical potentials for emitted alpha particles. Phys Rev C 49:2136CrossRefGoogle Scholar
  21. 21.
    Avrigeanu V et al (2014) Further explorations of the α-particle optical model potential at low energies for the mass range A ≈ 45–209. Phys Rev C 90:044612CrossRefGoogle Scholar
  22. 22.
    Capote R et al (2009) Reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl Data Sheets 110:3107–3214CrossRefGoogle Scholar
  23. 23.
    Koning A, Hilaire S, Goriely S (2017) TALYS-1.9 user manualGoogle Scholar
  24. 24.
    Ferrari A and Sala PR (1998) The physics of high energy reactions. In: Gandini A, Reffo G (eds) Proceedings of the workshop on nuclear reaction data and nuclear reactors physics, design and safety, International Centre for Theoretical Physics, Miramare-Trieste, Italy, 15 April–17 May 1996. World Scientific, p 424Google Scholar
  25. 25.
    Heininger CG and Wiig EO (1956) Spallation of Vanadium with 60-, 100-, 175-, and 240-MeV protons. Phys Rev 101:1074CrossRefGoogle Scholar
  26. 26.
    Michel R, Brinkmann G, Weigel H and Herr W (1979) Measurement and hybrid-model analysis of proton-induced reactions with V, Fe, and Co. Nucl Phys, Sect A 322:40CrossRefGoogle Scholar
  27. 27.
    Levkovski VN (1991) Activation cross sections by protons and alphas, Moscow, USSRGoogle Scholar
  28. 28.
    Ditrói F, Tárkányi F, Takács S, Hermanne A (2016) Nuclear Instr Methods Phys Res B 381:16–28CrossRefGoogle Scholar
  29. 29.
    Michel R, Stueck R, Peiffer F (1985) Proton-induced reaction on Ti, V, Mn, Fe, Co and Ni. Nucl Phys, Sect A 441:617CrossRefGoogle Scholar
  30. 30.
    Tobailem J and de Lassus St. Genies CH (1975) report CEA-N-1466(3)Google Scholar
  31. 31.
    Albouy G, Cohen JP, Gusakow M, Poffe N, Sergolle H and Valentin L (1963) Reaction (p,3n+3p) between 30 and 150 MeV. J de Physique 24:67Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Laboratori Nazionali di Legnaro (LNL)Istituto Nazionale di Fisica Nucleare (INFN)LegnaroItaly
  2. di Scienze Chimiche e Farmaceutiche and Sezione INFN di FerraraUniversità degli Studi di FerraraFerraraItaly
  3. di FisicaUniversità degli Studi di PaviaPaviaItaly
  4. 4.Sezione INFN di PaviaPaviaItaly
  5. 5.Sezione INFN di PadovaPaduaItaly
  6. di FisicaUniversità degli Studi di BolognaBolognaItaly
  7. 7.Subatech, CNRS/IN2P3, IMT AtlantiqueUniversité de NantesNantes CedexFrance
  8. 8.GIP ARRONAXSaint-HerblainFrance

Personalised recommendations