Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 3, pp 1719–1728 | Cite as

Design of the explosion-proof detection integrated system based on PGNAA technology

  • JiaTong Li
  • WenBao Jia
  • DaQian HeiEmail author
  • YaJun Tang
  • Can Cheng
  • PingKun Cai
  • AiYun Sun
  • Dong Zhao
  • Qiang Hu
Article
  • 20 Downloads

Abstract

In the present study, the explosion-proof detection integrated system (EPDS) is designed for social security. With the D-T neutron generator and BGO detector as the core components, the hardware modules in EPDS are optimized based on SNR evaluation in MCNP simulation. With the 50 MPa load on the internal surface in ANSYS software, the small deformation of wall (6.0354 mm) shows the good explosion-proof performance of EPDS. Furthermore, 6 kinds of explosives with 5 ordinary goods are measured, and the results shows the good resolution capability based on the element ratio method. Finally, with the investigation of detection results under different time gradient, the minimum detection time is discussed as 600 s.

Keywords

Explosion-proof PGNAA System optimization Signal-to-noise ratio (SNR) Explosive detection 

Notes

Acknowledgements

This work was a project funded by National Natural Science Foundation of China (Grant Nos. 11505097 and 11775113), the National Key Research and Development Program of China (Grant No. 2017YFF0104200), Nanjing University of Aeronautics and Astronautics Ph.D. short-term visiting scholar project (Grant No. 190607DF06), the Fundamental Research Funds for the Nanjing University of Aeronautics and Astronautics (kfjj20180607) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. 1.
    Nercessian S, Panetta K, Agaian S (2008) Automatic detection of potential threat objects in X-ray luggage scan images. IEEE Conf.  https://doi.org/10.1109/THS.2008.4534504 CrossRefGoogle Scholar
  2. 2.
    Lewis IR, Daniel NW, Griffiths PR (1997) Interpretation of Raman spectra of nitro-containing explosive materials. Appl Spectrosc.  https://doi.org/10.1366/0003702971939695 CrossRefGoogle Scholar
  3. 3.
    Ali EMA, Edwards HGM, Scowen IJ (2009) In-situ detection of single particles of explosive on clothing with confocal Raman microscopy. Talanta.  https://doi.org/10.1016/j.talanta.2008.12.038 CrossRefPubMedGoogle Scholar
  4. 4.
    Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta.  https://doi.org/10.1016/S0039-9140(00)00565-8 CrossRefPubMedGoogle Scholar
  5. 5.
    Tam M, Hill HH (2004) Secondary electrospray ionization-ion mobility spectrometry for explosive vapor detection. Anal Chem.  https://doi.org/10.1021/ac0354591 CrossRefPubMedGoogle Scholar
  6. 6.
    Sheen DM, Mcmakin DL, Severtsen RH (1996) Concealed explosive detection on personnel using a wideband holographic millimeter-wave imaging system. SPIE.  https://doi.org/10.1117/12.243191 CrossRefGoogle Scholar
  7. 7.
    Kolinko VG, Lin SH, Shek A, Manning W, Martin C, Hall M, Kirsten O, Moore J, Wikner DA (2005) A passive millimeter-wave imaging system for concealed weapons and explosives detection. SPIE.  https://doi.org/10.1117/12.606661 CrossRefGoogle Scholar
  8. 8.
    Gozani T, Strellis D (2007) Advances in neutron based bulk explosive detection. Nucl Instrum Methods Phys Res Sect B.  https://doi.org/10.1016/j.nimb.2007.04.167 CrossRefGoogle Scholar
  9. 9.
    Alfonso K, Elsalim M, King M, Strellis D, Gozani T (2013) MCNP simulation benchmarks for a portable inspection system for narcotics, explosives, and nuclear material detection. IEEE Trans Nucl Sci.  https://doi.org/10.1109/tns.2012.2227801 CrossRefGoogle Scholar
  10. 10.
    Gardner RP, Mayo CW, El-Sayyed ES, Metwally WA, Zheng Y, Poezart M (2000) A feasibility study of a coincidence counting approach for PGNAA applications. Appl Radiat Isot.  https://doi.org/10.1016/s0969-8043(00)00206-2 CrossRefPubMedGoogle Scholar
  11. 11.
    Zs Révay, Kudějová P, Kleszcz K, SoLlradl S, Genreith C (2015) In-beam activation analysis facility at MLZ. Garch Nucl Instrum Methods Phys Res Sect A.  https://doi.org/10.1016/j.nima.2015.07.063 CrossRefGoogle Scholar
  12. 12.
    Naqvi AA, Maslehuddin M, Garwan MA, Nagadi MM, Al-Amoudi OSB, Khateeb-ur-Rehman Raashid M (2011) Estimation of minimum detectable concentration of chlorine in the blast furnace slag cement concrete. Nucl Instrum Methods Phys Res Sect B.  https://doi.org/10.1016/j.nimb.2010.10.006 CrossRefGoogle Scholar
  13. 13.
    Jiatong L, Wenbao J, Daqian H, Pingkun C, Can C, Yajun T (2018) The optimization of coal on-line analysis system based on Signal-to-Noise Ratio evaluation. J Radioannal Nucl Chem.  https://doi.org/10.1007/s10967-018-6173-x CrossRefGoogle Scholar
  14. 14.
    Daqian H, Haocheng Z, Wenbao J, Can C, Zhou J, Hongtao W, Da C (2016) Design of a setup for 252Cf neutron source for storage and analysis purpose. Nucl Instrum Methods Phys Res Sect B.  https://doi.org/10.1016/j.nimb.2016.09.003 CrossRefGoogle Scholar
  15. 15.
    Mukai T, Kanahashi H, Higashi K, Miyoshi T, Nieh TG (1999) Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading. Scr Mater.  https://doi.org/10.1016/S1359-6462(99)00038-X CrossRefGoogle Scholar
  16. 16.
    Aiyun S, Wenbao J, Jiatong L, Daqian H, Wenhan D, Can C, Pingkun C, Yajun T, Dong Z, Qiang H (2019) Method for accurate position detection of landmine based on PGNAA technology. J Radioannal Nucl Chem.  https://doi.org/10.1007/s10967-019-06498-6 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • JiaTong Li
    • 1
  • WenBao Jia
    • 1
    • 2
  • DaQian Hei
    • 1
    • 2
    Email author
  • YaJun Tang
    • 1
  • Can Cheng
    • 1
  • PingKun Cai
    • 1
  • AiYun Sun
    • 1
  • Dong Zhao
    • 1
  • Qiang Hu
    • 1
  1. 1.Institute of Nuclear Analytical Technology, College of Materials Science and EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhouChina

Personalised recommendations