Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 1115–1125 | Cite as

Efficient photocatalytic removal of U(VI) over π-electron-incorporated g-C3N4 under visible light irradiation

  • Junyuan Gong
  • Zongbo XieEmail author
  • Chuanbao Xiong
  • Chang Liu
  • Ziqiang Li
  • Zhanggao Le


A series of π-electrons incorporated graphitic carbon nitride (g-C3N4) photocatalysts were prepared using a facile copolymerization strategy, allowing aromatic rings to be grafted into the (g-C3N4) network. The photocatalyst activity of aromatic rings grafted samples in the photoreduction elimination reaction of U(VI) was significantly enhanced, which was more efficient than that achieved by pristine g-C3N4. In addition, the anthracene-grafted g-C3N4 showed excellent U(VI) removal properties, 99% of U(VI) was eliminated within 30 min of visible light irradiation, and the samples still showed the high photoreduction activity after 3 reaction cycles. On the basis of the experimental and characterization analysis, the enhanced photoreduction activity could be attributed to accelerating the electron transportation of π-electrons incorporated.


π-Electrons incorporate Carbon nitride Photocatalytic Uranium 



We thank the National Natural Science Foundation of China (Nos. 11765002, 21966003), the National Natural Science Foundation of Jiangxi (No. 20181BAB203019), and the graduate innovation project fund of East China University of Technology (DHYC-201912) for the financial support. We also appreciate the instrumentation for the experimental testing provided by other research groups in East China University of Technology.

Supplementary material

10967_2019_6817_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1354 kb)


  1. 1.
    Buema G, Noli F, Misaelides P, Sutiman DM, Cretescu I, Harja M (2014) Uranium removal from aqueous solutions by raw and modified thermal power plant ash. J Radioanal Nucl Chem 299(1):381–386. CrossRefGoogle Scholar
  2. 2.
    Todorovsky D, Kulev I (1993) On the uranium content in some technogenic products potential environmental pollutants. J Radioanal Nucl Chem 176(5):405–413. CrossRefGoogle Scholar
  3. 3.
    Yan S, Hua B, Bao Z, Yang J, Liu C, Deng B (2010) Uranium(VI) removal by nanoscale zerovalent iron in anoxic batch systems. Environ Sci Technol 44(20):7783–7789. CrossRefPubMedGoogle Scholar
  4. 4.
    Abdi MR, Shakur HR, Rezaee Ebrahim Saraee K, Sadeghi M (2014) Effective removal of uranium ions from drinking water using CuO/X zeolite based nanocomposites: effects of nano concentration and cation exchange. J Radioanal Nucl Chem 300(3):1217–1225. CrossRefGoogle Scholar
  5. 5.
    Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134(39):16441–16446. CrossRefPubMedGoogle Scholar
  6. 6.
    Li J, Wu D, Iocozzia J, Du H, Liu X, Yuan Y, Zhou W, Li Z, Xue Z, Lin Z (2019) Achieving efficient incorporation of π-electrons into graphitic carbon nitride for markedly improved hydrogen generation. Angew Chem Int Edit 58(7):2156. CrossRefGoogle Scholar
  7. 7.
    Wu X, Jiang S, Song S, Sun C (2018) Constructing effective photocatalytic purification system with P-introduced g-C3N4 for elimination of UO2 2+. Appl Surf Sci 430:371–379. CrossRefGoogle Scholar
  8. 8.
    Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S (2016) Boron doped g-C3N4 with enhanced photocatalytic UO2 2+ reduction performance. Appl Surf Sci 360:1016–1022. CrossRefGoogle Scholar
  9. 9.
    Lu C, Zhang P, Jiang S, Wu X, Song S, Zhu M, Lou Z, Li Z, Liu F, Liu Y, Wang Y, Le Z (2017) Photocatalytic reduction elimination of UO2 2+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl Catal B-Environ 200:378–385. CrossRefGoogle Scholar
  10. 10.
    Ke L, Li P, Wu X, Jiang S, Mingbiao L, Liu Y, Le Z, Sun C, Song S (2016) Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO2 2+ under visible Light. Appl Catal B-Environ. CrossRefGoogle Scholar
  11. 11.
    Jiang X-H, Xing Q-J, Luo X-B, Li F, Zou J-P, Liu S-S, Li X, Wang X-K (2018) Simultaneous photoreduction of uranium(VI) and photooxidation of arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl Catal B-Environ 228:29–38. CrossRefGoogle Scholar
  12. 12.
    Kumar S, Karthikeyan S, Lee FA (2018) g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts. CrossRefGoogle Scholar
  13. 13.
    Liu J, Wang H, Antonietti M (2016) Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chem Soc Rev 45(8):2308–2326. CrossRefPubMedGoogle Scholar
  14. 14.
    Chen Y, Zhang J, Zhang M, Wang X (2013) Molecular and textural engineering of conjugated carbon nitride catalysts for selective oxidation of alcohols with visible light. Chem Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Song Z, Li Z, Lin L, Zhang Y, Lin T, Chen L, Cai Z, Lin S, Guo L, Fu F, Wang X (2017) Phenyl-doped graphitic carbon nitride: photoluminescence mechanism and latent fingerprint imaging. Nanoscale 9(45):17737–17742. CrossRefPubMedGoogle Scholar
  16. 16.
    Fan X, Zhang L, Wang M, Huang W, Zhou Y, Li M, Cheng R, Shi J (2016) Constructing carbon-nitride-based copolymers via Schiff base chemistry for visible-light photocatalytic hydrogen evolution. Appl Catal B-Environ 182:68–73. CrossRefGoogle Scholar
  17. 17.
    Li K, Sun M, Zhang W-D (2018) Polycyclic aromatic compounds-modified graphitic carbon nitride for efficient visible-light-driven hydrogen evolution. Carbon 134:134–144. CrossRefGoogle Scholar
  18. 18.
    Bai J, Yin C, Xu H, Chen G, Ni Z, Wang Z, Li Y, Kang S, Zheng Z, Li X (2018) Facile urea-assisted precursor pre-treatment to fabricate porous g-C3N4 nanosheets for remarkably enhanced visible-light-driven hydrogen evolution. J Collod Interf Sci 532:280–286. CrossRefGoogle Scholar
  19. 19.
    Chen Z, Sun P, Fan B, Liu Q, Zhang Z, Fang X (2015) Textural and electronic structure engineering of carbon nitride via doping with π-deficient aromatic pyridine ring for improving photocatalytic activity. Appl Catal B-Environ 170–171:10–16. CrossRefGoogle Scholar
  20. 20.
    Fan X, Zhang L, Cheng R, Wang M, Li M, Zhou Y, Shi J (2015) Construction of graphitic C3N4-based intramolecular donor–acceptor conjugated copolymers for photocatalytic hydrogen evolution. ACS Catal 5(9):5008–5015. CrossRefGoogle Scholar
  21. 21.
    Qin J, Chen J, Salisbury JB (2015) Photon transferred TL signals from potassium feldspars and their effects on post-IR IRSL measurements. J Lumin 160:1–8. CrossRefGoogle Scholar
  22. 22.
    Niu P, Zhang L, Liu G, Cheng H-M (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22(22):4763–4770. CrossRefGoogle Scholar
  23. 23.
    Wu S-Z, Li K, Zhang W-D (2015) On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity. Appl Surf Sci 324:324–331. CrossRefGoogle Scholar
  24. 24.
    Chen F, Yang Q, Wang Y, Zhao J, Wang D, Li X, Guo Z, Wang H, Deng Y, Niu C, Zeng G (2017) Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant. Appl Catal B-Environ 205:133–147. CrossRefGoogle Scholar
  25. 25.
    Ho W, Zhang Z, Lin W, Huang S, Zhang X, Wang X, Huang Y (2015) Copolymerization with 2,4,6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4. ACS Appl Mater Interfaces 7(9):5497–5505. CrossRefPubMedGoogle Scholar
  26. 26.
    Cao S, Huang Q, Zhu B, Yu J (2017) Trace-level phosphorus and sodium co-doping of g-C3N4 for enhanced photocatalytic H2 production. J Power Sources 351:151–159. CrossRefGoogle Scholar
  27. 27.
    Liu M, Luo L, Dong F, Wei H, Nie X, Zhang W, Hu W, Ding C, Wang P (2019) Characteristics and mechanism of uranium photocatalytic removal enhanced by chelating hole scavenger citric acid in a TiO2 suspension system. J Radioanal Nucl Chem 319(1):147–158. CrossRefGoogle Scholar
  28. 28.
    Hu L, Yan X-W, Zhang X-J, Shan D (2018) Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers. Appl Surf Sci 428:819–824. CrossRefGoogle Scholar
  29. 29.
    He H, Zong M, Dong F, Yang P, Ke G, Liu M, Nie X, Ren W, Bian L (2017) Simultaneous removal and recovery of uranium from aqueous solution using TiO2 photoelectrochemical reduction method. J Radioanal Nucl Chem 313(1):59–67. CrossRefGoogle Scholar
  30. 30.
    Salomone VN, Meichtry JM, Zampieri G, Litter MI (2015) New insights in the heterogeneous photocatalytic removal of U(VI) in aqueous solution in the presence of 2-propanol. Chem Eng J 261:27–35. CrossRefGoogle Scholar
  31. 31.
    Chen L, Feng S, Zhao D, Chen S, Li F, Chen C (2017) Efficient sorption and reduction of U(VI) on zero-valent iron-polyaniline-graphene aerogel ternary composite. J Collod Interf Sci 490:197–206. CrossRefGoogle Scholar
  32. 32.
    Feng J, Yang Z, He S, Niu X, Zhang T, Ding A, Liang H, Feng X (2018) Photocatalytic reduction of uranium(VI) under visible light with Sn-doped In2S3 microspheres. Chemosphere 212:114–123. CrossRefPubMedGoogle Scholar
  33. 33.
    Zou Y, Wang P, Yao W, Wang X, Liu Y, Yang D, Wang L, Hou J, Alsaedi A, Hayat T, Wang X (2017) Synergistic immobilization of UO2 2+ by novel graphitic carbon nitride @ layered double hydroxide nanocomposites from wastewater. Chem Eng J 330:573–584. CrossRefGoogle Scholar
  34. 34.
    Li Z-J, Huang Z-W, Guo W-L, Wang L, Zheng L-R, Chai Z-F, Shi W-Q (2017) Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ Sci Technol 51(10):5666–5674. CrossRefPubMedGoogle Scholar
  35. 35.
    Amadelli R, Maldotti A, Sostero S, Carassiti V (1992) Photodeposition of uranium oxides onto TiO2 from aqueous uranyl solutions. ChemInform. CrossRefGoogle Scholar
  36. 36.
    Guo Y, Li L, Li Y, Li Z, Wang X, Wang G (2016) Adsorption and photocatalytic reduction activity of uranium(VI) on zinc oxide/rectorite composite enhanced with methanol as sacrificial organics. J Radioanal Nucl Chem 310(2):883–890. CrossRefGoogle Scholar
  37. 37.
    Wang G, Zhen J, Zhou L, Wu F, Deng N (2015) Adsorption and photocatalytic reduction of U(VI) in aqueous TiO2 suspensions enhanced with sodium formate. J Radioanal Nucl Chem 304(2):579–585. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Nuclear Resources and EnvironmentEast China University of TechnologyNanchangPeople’s Republic of China
  2. 2.School of Nuclear Science and EngineeringEast China University of TechnologyNanchangPeople’s Republic of China

Personalised recommendations