Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 455–465 | Cite as

Investigation of novel composites to be used as backfill materials in radioactive waste disposal facilities

  • N. A. Abdel ReheimEmail author
  • M. Abdel Geleel
  • Ashraf. A. Mohammed
  • E. R. Atta
  • Emtithal A. Elsawy
  • Amaal Tawfik
Article
  • 50 Downloads

Abstract

The current work aims at the preparation and characterization of novel composite materials of acrylic acid/charcoal/montmorillonite (MMT) (PAACM and AMC). They are characterized using SEM, EDX, and TGA. The work handled the removal of cesium and strontium ions, as a model radioactive waste, their concentrations were determined using ICP. The experimental results showed that PAACM composite has a sorption capacity of 11.49 mg/g for Cs+ and 10.99 mg/g for Sr2+, but for AMC, the composite has a sorption capacity of 21.59 mg/g Cs+ and 26.68 mg/g for Sr2+. High thermal stability even at 700 °C the net weight loss is 1% for both composites.

Keywords

Backfill materials Disposal facilities Irradiation Sorption Grafting Radionuclides 

Notes

Acknowledgements

The authors express their gratitude and appreciation to ENRRA for supporting and financing this work.

References

  1. 1.
    Mauerhofer E, Havenith A, Kettler J (2016) Prompt gamma neutron activation analysis of a 200 L steel drum homogeneously filled with concrete. J Radioanal Nucl Chem 309(1):273–278CrossRefGoogle Scholar
  2. 2.
    (2003) Remediation of areas contaminated by past activities and accidents. International Atomic Energy Agency, ViennaGoogle Scholar
  3. 3.
    (2010) Estimation of global inventories of radioactive waste and other radioactive materials. International Atomic Energy Agency, ViennaGoogle Scholar
  4. 4.
    Rahman R, Ibrahium HA, Hung Y-T (2011) Liquid radioactive wastes treatment: a review. Water 3(2):551–565CrossRefGoogle Scholar
  5. 5.
    Shakir K et al (2011) Simultaneous removal of chromotrope 2B and radionuclides from mixed radioactive process wastewater using organo-bentonite. Eur J Chem 2(1):83–93CrossRefGoogle Scholar
  6. 6.
    Geleel MA, Mahmoud NS (2011) Improvement of radioactive waste solidification process using modified bentonite materials. In: Proceedings of the eighth Nuclear and Particle Physics Conference (NUPPAC-2011). Egypt, p. 287Google Scholar
  7. 7.
    Aliende Urtasun A, Luquin A, Garrido JJ (2017) Nuclear fission technology in Spain: history and social concerns. Public Underst Sci. 26(3):307–324CrossRefGoogle Scholar
  8. 8.
    Hosan MI (2017) Radioactive waste classification, management and environment. Eng Int 5(2):53–62CrossRefGoogle Scholar
  9. 9.
    Sinnathamby G, Korkiala-Tanttu L, Forés JG (2014) Interface shear behaviour of tunnel backfill materials in a deep-rock nuclear waste repository in Finland. Soils Found 54(4):777–788CrossRefGoogle Scholar
  10. 10.
    Keith-Roach M et al (2015) Past experience of environmental, health and safety issues in REE mining and processing industries and an evaluation of related EU and international standards and regulations. Final Report of the EuRare Project; Kemakta Konsult AB: Stockholm, Sweden; Geological Survey of Finland: Espoo, FinlandGoogle Scholar
  11. 11.
    Banerjee D et al (2016) Removal of TcO4 ions from solution: materials and future outlook. Chem Soc Rev 45(10):2724–2739CrossRefGoogle Scholar
  12. 12.
    Fernandes MM, Scheinost A, Baeyens B (2016) Sorption of trivalent lanthanides and actinides onto montmorillonite: macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites. Water Res 99:74–82CrossRefGoogle Scholar
  13. 13.
    Cui Y-J (2017) On the hydro-mechanical behaviour of MX80 bentonite-based materials. J Rock Mech Geotech Eng 9(3):565–574CrossRefGoogle Scholar
  14. 14.
    Milodowski AE, Norris S, Alexander WR (2016) Minimal alteration of montmorillonite following long-term interaction with natural alkaline groundwater: implications for geological disposal of radioactive waste. Appl Geochem 66:184–197CrossRefGoogle Scholar
  15. 15.
    Tournassat C et al (2015) Natural and engineered clay barriers, vol 6. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Tutolo BM et al (2015) CO2 sequestration in feldspar-rich sandstone: coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties. Geochim Cosmochim Acta 160:132–154CrossRefGoogle Scholar
  17. 17.
    Bagheri M, Shariatipour SM, Ganjian E (2019) Prediction of the lifespan of cement at a specific depth based on the coupling of geomechanical and geochemical processes for CO2 storage. Int J Greenh Gas Control 86:43–65CrossRefGoogle Scholar
  18. 18.
    Thaysen E et al (2017) Effect of dissolved H2SO4 on the interaction between CO2-rich brine solutions and limestone. Sandstone Marl Chem Geol 450:31–43CrossRefGoogle Scholar
  19. 19.
    Rübel A, Becker D-A, Fein E (2007) Radionuclide transport modelling. Performance assessment of repositories in clays. Gesellschaft fuer Anlagen-und Reaktorsicherheit mbH (GRS)Google Scholar
  20. 20.
    Andersson KG et al (2015) An overview of current non-nuclear radioactive waste management in the Nordic countries and considerations on possible needs for enhanced inter-Nordic cooperation. Final report from a NKS-B activity commissioned by the Nordic Council of MinistersGoogle Scholar
  21. 21.
    Fröhlich DR (2015) Sorption of neptunium on clays and clay minerals—a review. Clays Clay Miner 63(4):262–276CrossRefGoogle Scholar
  22. 22.
    Waters CN et al (2018) Recognizing anthropogenic modification of the subsurface in the geological record. Q J Eng Geol Hydrogeol 52(1):83–98CrossRefGoogle Scholar
  23. 23.
    Pesetskii S, Bogdanovich S, Aderikha V (2019) Polymer/clay nanocomposites produced by dispersing layered silicates in thermoplastic melts. In: Polymer nanocomposites for advanced engineering and military applications. IGI Global, pp 66–94Google Scholar
  24. 24.
    Siddique S et al (2019) Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low-density polyethylene nanocomposites. J Polym Res 26(6):154CrossRefGoogle Scholar
  25. 25.
    Majka TM, Pielichowski K (2019) Functionalized clay-containing composites. In: Polymer composites with functionalized nanoparticles. Elsevier, Amsterdam, pp 149–178CrossRefGoogle Scholar
  26. 26.
    Irani M, Ismail H, Ahmad Z (2013) Preparation and properties of linear low-density polyethylene-g-poly(acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polym Test 32(3):502–512CrossRefGoogle Scholar
  27. 27.
    Wang T et al (2007) Grafting of polymers from clay nanoparticles via high-dose gamma-ray irradiation. Mater Lett 61(17):3723–3727CrossRefGoogle Scholar
  28. 28.
    Mittal V (2007) Polymer chains grafted “to” and “from” layered silicate clay platelets. J Colloid Interface Sci 314(1):141–151CrossRefGoogle Scholar
  29. 29.
    Yazdandoust F, Yasrobi SS (2010) Effect of cyclic wetting and drying on swelling behavior of polymer-stabilized expansive clays. Appl Clay Sci 50(4):461–468CrossRefGoogle Scholar
  30. 30.
    Ibeh P et al (2019) Activated carbon monoliths from lignocellulosic biomass waste for electrochemical applications. J Taiwan Inst Chem Eng 97:480–488CrossRefGoogle Scholar
  31. 31.
    Celep G, Dincer K (2017) Optimization of parameters for electrospinning of polyacrylonitrile nanofibers by the Taguchi method. Int Polym Process 32(4):508–514CrossRefGoogle Scholar
  32. 32.
    Banu HT, Karthikeyan P, Meenakshi S (2018) Lanthanum(III) encapsulated chitosan-montmorillonite composite for the adsorptive removal of phosphate ions from aqueous solution. Int J Biol Macromol 112:284–293CrossRefGoogle Scholar
  33. 33.
    Ezquerro CS et al (2015) Characterization of montmorillonites modified with organic divalent phosphonium cations. Appl Clay Sci 111:1–9CrossRefGoogle Scholar
  34. 34.
    Gloukhovski R, Freger V, Tsur Y (2018) Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: a beginner’s guide. Rev Chem Eng 34(4):455–479CrossRefGoogle Scholar
  35. 35.
    Wang Y et al (2017) Swelling and dimensional stability of xyloglucan/montmorillonite nanocomposites in moist conditions from molecular dynamics simulations. Comput Mater Sci 128:191–197CrossRefGoogle Scholar
  36. 36.
    Lloyd-Parry O et al (2018) Nanomedicine applications in women’s health: state of the art. Int J Nanomed 13:1963CrossRefGoogle Scholar
  37. 37.
    Emeléus HJ, Anderson JS (1952) Modern aspects of inorganic chemistry. Routledge, LondonGoogle Scholar
  38. 38.
    Wells AF (2012) Structural inorganic chemistry. Oxford University Press, OxfordGoogle Scholar
  39. 39.
    Duncan Lyngdoh RH, Schaefer HF III, King RB (2018) Metal–metal (MM) bond distances and bond orders in binuclear metal complexes of the first row transition metals titanium through zinc. Chem Rev 118(24):11626–11706CrossRefGoogle Scholar
  40. 40.
    Wang K-Y et al (2019) Effective and rapid adsorption of Sr2+ ions by a hydrated pentasodium cluster templated zinc thiostannate. Inorg Chem 58:10184–10193CrossRefGoogle Scholar
  41. 41.
    Zaman T et al (2019) Mono and co-substitution of Sr2+ and Ca22+ on the structural, electrical and optical properties of barium titanate ceramics. Ceram Int 45(8):10154–10162CrossRefGoogle Scholar
  42. 42.
    (1999) Safety assessment for near surface disposal of radioactive waste. International Atomic Energy Agency, ViennaGoogle Scholar
  43. 43.
    (2000) Regulatory control of radioactive discharges to the environment. International Atomic Energy Agency, ViennaGoogle Scholar
  44. 44.
    Lombardi CB (2008) Egypt’s Supreme Constitutional Court: managing Constitutional Conflict in an Authoritarian, Aspirationally Islamic State. J Comp L 3:234Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Egyptian Nuclear and Radiological Regulatory AuthorityNasr City, CairoEgypt
  2. 2.Chemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  3. 3.Girls College for Art, Science and EducationAin Shams UniversityCairoEgypt

Personalised recommendations