Advertisement

Theoretical insights on the complexation of Am(III) and Cm(III) with amide-type ligands

  • Cong-Zhi Wang
  • Jian-Hui Lan
  • Qun-Yan Wu
  • Zhi-Fang Chai
  • Wei-Qun ShiEmail author
Article
  • 22 Downloads

Abstract

Separation of adjacent actinides (An) americium and curium is a critical and challenging step in advanced nuclear fuel cycles. Herein, we performed a quantum chemical calculation to explore the separation behavior of Am(III) from Cm(III) by two representative amide-type ligands, N,N′-dimethyl-N,N′-dioctyl-2-(2-hexyloxyethyl)malonamide (DMDOHEMA) and N,N,N′,N′,N″,N″-hexaalkyl-nitrilotriacetamide (NTAamide). It was found that the better energy match of Am 5f orbitals and O, N 2p orbitals of the amide-type ligands resulted in the selective ability of these ligands to Am3+ over Cm3+. Complexation reaction analysis predicted that An(DMDOHEMA)2(NO3)3 and [An(NTAamide)2]3+ were the most probable species in the separation processes.

Keywords

Actinides Separation Extraction Density functional theory 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21876174, 11875058, 11575212), Major Program of the National Natural Science Foundation of China (21790373), and the Science Challenge Project (TZ2016004). The results described in this study were obtained on the ScGrid of the Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.

Supplementary material

10967_2019_6804_MOESM1_ESM.docx (915 kb)
Supplementary material 1 (DOCX 914 kb)

References

  1. 1.
    Salvatores M, Palmiotti G (2011) Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges. Prog Part Nucl Phys 66(1):144–166CrossRefGoogle Scholar
  2. 2.
    Morss LR, Edelstein NM, Fuger J, Katz JJ (2006) The chemistry of the actinide and transactinide elements. Springer, DordrechtCrossRefGoogle Scholar
  3. 3.
    Runde WH, Mincher BJ (2011) Higher oxidation states of americium: preparation, characterization and use for separations. Chem Rev 111(9):5723–5741PubMedCrossRefGoogle Scholar
  4. 4.
    Myasoedov BF (1986) Separation of americium and curium using of the highest oxidation-states of americium. Abstr Pap Am Chem Soc 191:219-INDEGoogle Scholar
  5. 5.
    Riddle C, Paviet-Hartmann P, Czerwinski K, Poineau F, Weck P, Hartmann T (2011) Speciation behavior of americium higher oxidation states for the separation of americium from curium. Abstr Pap Am Chem Soc 242Google Scholar
  6. 6.
    Richards JM, Sudowe R (2016) Separation of americium in high oxidation states from curium utilizing sodium bismuthate. Anal Chem 88(9):4605–4608PubMedCrossRefGoogle Scholar
  7. 7.
    Mincher BJ, Martin LR, Schmitt NC (2008) Tributylphosphate extraction behavior of bismuthate-oxidized americium. Inorg Chem 47(15):6984–6989PubMedCrossRefGoogle Scholar
  8. 8.
    Modolo G, Kluxen P, Geist A (2010) Demonstration of the LUCA process for the separation of americium(III) from curium(III), californium(III), and lanthanides(III) in acidic solution using a synergistic mixture of bis(chlorophenyl)dithiophosphinic acid and tris(2-ethylhexyl)phosphate. Radiochim Acta 98(4):193–201CrossRefGoogle Scholar
  9. 9.
    Ekberg C, Skarnemark G (2001) Partitioning: new solvent extraction processes for minor actinides, Third Half-Yearly Report 2001. Contract PARTNEW (FIKT-CT2000-00087)Google Scholar
  10. 10.
    Gannaz B, Antonio MR, Chiarizia R, Hill C, Cote G (2006) Structural study of trivalent lanthanide and actinide complexes formed upon solvent extraction. Dalton Trans 38:4553–4562CrossRefGoogle Scholar
  11. 11.
    Sasaki Y, Tsubata Y, Kitatsuji Y, Morita Y (2013) Novel soft-hard donor ligand, NTAamide, for mutual separation of trivalent actinoids and lanthanoids. Chem Lett 42(1):91–92CrossRefGoogle Scholar
  12. 12.
    Sasaki Y, Tsubata Y, Kitatsuji Y, Sugo Y, Shirasu N, Morita Y, Kimura T (2013) Extraction behavior of metal ions by TODGA, DOODA, MIDOA, and NTAamide extractants from HNO3 to n-dodecane. Solvent Extr Ion Exch 31(4):401–415CrossRefGoogle Scholar
  13. 13.
    Sasaki Y, Tsubata Y, Kitatsuji Y, Sugo Y, Shirasu N, Morita Y (2014) Novel extractant, NTAamide, and its combination with TEDGA for mutual separation of Am/Cm/Ln. Solvent Extr Ion Exch 32(2):179–188CrossRefGoogle Scholar
  14. 14.
    Lehman-Andino I, Su J, Papathanasiou KE, Eaton TM, Jian JW, Dan D, Albrecht-Schmitt TE, Dares CJ, Batista ER, Yang P, Gibson JK, Kavallieratos K (2019) Soft-donor dipicolinamide derivatives for selective actinide(III)/lanthanide(III) separation: the role of S- vs. O-donor sites. Chem Commun 55(17):2441–2444CrossRefGoogle Scholar
  15. 15.
    Xu L, Pu N, Li YZ, Wei PP, Sun TX, Xiao CL, Chen J, Xu C (2019) Selective separation and complexation of trivalent actinide and lanthanide by a tetradentate soft-hard donor ligand: solvent extraction, spectroscopy, and DFT calculations. Inorg Chem 58(7):4420–4430PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kong XH, Wu QY, Wang CZ, Lan JH, Chai ZF, Nie CM, Shi WQ (2018) Insight into the extraction mechanism of americium(III) over europium(III) with pyridylpyrazole: a relativistic quantum chemistry study. J Phys Chem A 122(18):4499–4507PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Iveson PB, Drew MGB, Hudson MJ, Madic C (1999) Structural studies of lanthanide complexes with new hydrophobic malonamide solvent extraction agents. J Chem Soc Dalton 20:3605–3610CrossRefGoogle Scholar
  18. 18.
    Diss R, Wipff G (2005) Lanthanide cation extraction by malonamide ligands: from liquid–liquid interfaces to microemulsions. A molecular dynamics study. Phys Chem Chem Phys 7(2):264–272PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kaneko M, Watanabe M, Matsumura T (2016) The separation mechanism of Am(III) from Eu(III) by diglycolamide and nitrilotriacetamide extraction reagents using DFT calculations. Dalton Trans 45(43):17530–17537PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ehlers AW, Frenking G (1994) Theoretical studies of organometallic compounds. 7. Structures and bond-energies of the transition-metal hexacarbonyls M(Co)6 (M = Cr, Mo, W). A theoretical study. J Am Chem Soc 116(4):1514–1520CrossRefGoogle Scholar
  21. 21.
    Delley B, Wrinn M, Luthi HP (1994) Binding energies, molecular structures, and vibrational frequencies of transition metal carbonyls using density functional theory with gradient corrections. J Chem Phys 100(8):5785–5791CrossRefGoogle Scholar
  22. 22.
    Li J, Schreckenbach G, Ziegler T (1995) A reassessment of the first metal-carbonyl dissociation-energy in M(Co)4 (M = Ni, Pd, Pt), M(Co)5 (M = Fe, Ru, Os), and M(Co)6 (M = Cr, Mo, W) by a quasi-relativistic density-functional method. J Am Chem Soc 117(1):486–494CrossRefGoogle Scholar
  23. 23.
    Jonas V, Thiel W (1995) Theoretical study of the vibrational spectra of the transition metal carbonyls M(Co)6 [M = Cr, Mo, W], M(Co)5 [M = Fe, Ru, Os], and M(Co)4 [M = Ni, Pd, Pt]. J Chem Phys 102(21):8474–8484CrossRefGoogle Scholar
  24. 24.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  25. 25.
    Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M et al (2009) Gaussian 09, Rev. A.02. Gaussian Inc, WallingfordGoogle Scholar
  27. 27.
    Kuchle W, Dolg M, Stoll H, Preuss H (1994) Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J Chem Phys 100(10):7535–7542CrossRefGoogle Scholar
  28. 28.
    Cao XY, Dolg M (2004) Segmented contraction scheme for small-core actinide pseudopotential basis sets. J Molec Struct (THEOCHEM) 673(1–3):203–209CrossRefGoogle Scholar
  29. 29.
    Cao XY, Dolg M (2002) Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J Molec Struct (THEOCHEM) 581(1–3):139–147CrossRefGoogle Scholar
  30. 30.
    Klamt A, Schuurmann G (1993) Cosmo—a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perk T 2(5):799–805CrossRefGoogle Scholar
  31. 31.
    Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the different hybrids for different spins natural bond orbital procedure. J Mol Struct (THEOCHEM) 46:41–62CrossRefGoogle Scholar
  32. 32.
    Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102(24):7211–7218CrossRefGoogle Scholar
  33. 33.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83(2):735–746CrossRefGoogle Scholar
  34. 34.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88(6):899–926CrossRefGoogle Scholar
  35. 35.
    Morokuma K (1971) Molecular orbital studies of hydrogen bonds. 3. C=O···H–O hydrogen bond in H2CO···H2O and H2CO···2H2O. J Chem Phys 55(3):1236CrossRefGoogle Scholar
  36. 36.
    Ziegler Tom, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. Theoret Chim Acta 46:1–10CrossRefGoogle Scholar
  37. 37.
    ADF2012.01 SCM (2012) Theoretical Chemistry. Vrije Universiteit: Amsterdam, The Netherlands. http://www.scm.com
  38. 38.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100CrossRefGoogle Scholar
  39. 39.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822–8824CrossRefGoogle Scholar
  40. 40.
    Mitoraj M, Michalak A (2007) Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J Mol Model 13(2):347–355PubMedCrossRefGoogle Scholar
  41. 41.
    Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5(4):962–975PubMedCrossRefGoogle Scholar
  42. 42.
    Den Auwer C, Charbonnel MC, Drew MGB, Grigoriev M, Hudson MJ, Iveson PB, Madic C, Nierlich M, Presson MT, Revel R, Russell ML, Thuery P (2000) Crystallographic, X-ray absorption, and IR studies of solid- and solution-state structures of tris(nitrato) N,N,N′,N′-tetraethylmalonamide complexes of lanthanides. Comparison with the americium complex. Inorg Chem 39(7):1487–1495CrossRefGoogle Scholar
  43. 43.
    Chan GYS, Drew MGB, Hudson MJ, Iveson PB, Liljenzin JO, Skalberg M, Spjuth L, Madic C (1997) Solvent extraction of metal ions from nitric acid solution using N,N′-substituted malonamides. Experimental and crystallographic evidence for two mechanisms of extraction, metal complexation and ion-pair formation. J Chem Soc Dalton 4:649–660CrossRefGoogle Scholar
  44. 44.
    Runde W, Bean AC, Scott BL (2003) Synthesis and characterization of a channel framework in K3Am3(IO3)12HIO3. Chem Commun 15:1848–1849CrossRefGoogle Scholar
  45. 45.
    Sykora RE, Assefa Z, Haire RG, Albrecht-Schmitt TE (2004) Hydrothermal synthesis, structure, Raman spectroscopy, and self-irradiation studies of 248Cm(IO3)3. J Solid State Chem 177(12):4413–4419CrossRefGoogle Scholar
  46. 46.
    Sadhu B, Sundararajan M, Bandyopadhyay T (2016) Efficient separation of europium over americium using cucurbit-[5]-uril supramolecule: a relativistic DFT based investigation. Inorg Chem 55(2):598–609PubMedCrossRefGoogle Scholar
  47. 47.
    Kelley MP, Su J, Urban M, Luckey M, Batista ER, Yang P, Shafer JC (2017) On the origin of covalent bonding in heavy actinides. J Am Chem Soc 139(29):9901–9908PubMedCrossRefGoogle Scholar
  48. 48.
    Moyer BA (2009) Ion exchange and solvent extraction: a series of advances, vol 19. CRC Press, Boca RatonCrossRefGoogle Scholar
  49. 49.
    Vallet V, Grenthe I (2013) Can quantum chemical methods be used to predict Gibbs energies for reactions in solution? A case study using binary and ternary lanthanide(III) and actinide(III)-tris[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione] (TTA)–tributyl/trimethyl phosphate (TBP/TMP) complexes. Solvent Extr Ion Exch 31(4):358–369CrossRefGoogle Scholar
  50. 50.
    Gutten O, Rulisek L (2013) Predicting the stability constants of metal-ion complexes from first principles. Inorg Chem 52(18):10347–10355PubMedCrossRefGoogle Scholar
  51. 51.
    Cao XY, Heidelberg D, Ciupka J, Dolg M (2010) First-principles study of the separation of Am-III/Cm-III from Eu-III with Cyanex301. Inorg Chem 49(22):10307–10315PubMedCrossRefGoogle Scholar
  52. 52.
    Bryantsev VS, Hay BP (2015) Theoretical prediction of Am(III)/Eu(III) selectivity to aid the design of actinide–lanthanide separation agents. Dalton Trans 44(17):7935–7942PubMedCrossRefGoogle Scholar
  53. 53.
    Wiebke J, Moritz A, Cao X, Dolg M (2007) Approaching actinide(+III) hydration from first principles. Phys Chem Chem Phys 9:459–465PubMedCrossRefGoogle Scholar
  54. 54.
    Cao XY, Zhang J, Weissmann D, Dolg M, Chen XB (2015) Accurate quantum chemical modelling of the separation of Eu3+ from Am3+/Cm3+ by liquid–liquid extraction with Cyanex272. Phys Chem Chem Phys 17(32):20605–20616PubMedCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Laboratory of Nuclear Energy Chemistry, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial TechnologyChinese Academy of SciencesNingboChina

Personalised recommendations