Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 801–808 | Cite as

Through-diffusion study of Se(IV) in γ-irradiated bentonite and bentonite–magnetite

  • Zhifen WangEmail author
  • Tao WuEmail author
  • Peng Ren
  • Rong Hua
  • Hao Wu
  • Minhong Xu
  • Yanhua Tong


Through-diffusion experiments with HSeO3 and SeO32− (as a surrogate of 79Se(IV)) in bentonite samples have been performed. The effect of density, magnetite and irradiation on the experimental results have been investigated. It could be shown that the effect diffusion coefficient decreased with the increasing density. In the γ-radiation bentonite and bentonite–magnetite, the diffusion coefficient for SeO32− and HSeO3 were (0.45–4.11) × 10−11 m2/s and (0.95–3.74) × 10−11 m2/s, respectively. While the Kd values were (1.19–4.00) × 10−4 m3/kg and (1.83–4.86) × 10−4 m3/kg, respectively. Moreover, the relationship of De and εacc could be described by Archie’s law. This study reveals that the magnetite has large influence on the diffusion, while the effect of γ radiation on the bentonite is similar.


Se(IV) Diffusion γ-Irradiated Bentonite Magnetite 



This work was supported by Zhejiang Provincial National Science Foundation of China (Y15B070018) and the National Natural Science Foundation of China (Grant No. 21207035); Jiangxi Education Department Science and Technology Research Project (GJJ170478); JIANGXI (NRE1313); National Defense Basic Scientific Research Projects (JCKY2017401C005); Development Fund of Key Laboratory of Mass Spectrometry Science and Instruments in Jiangxi Province (JXMS2017014).


  1. 1.
    Soler JM, Landa J, Havlova V, Tachi Y, Ebina T, Sardini P, Siitari-Kauppi M, Eikenberg J, Martin AJ (2015) Comparative modeling of an in situ diffusion experiment in granite at the grimsel test site. J Contam Hydrol 179:89–101CrossRefGoogle Scholar
  2. 2.
    Ye WM, Chen YG, Chen B, Wang QO, Wang J (2010) Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite. Eng Geol 116(1–2):12–20CrossRefGoogle Scholar
  3. 3.
    Standish TE, Zagidulin D, Ramamurthy S, Keech PG, Noël JJ, Shoesmith DW (2017) Galvanic corrosion of copper-coated carbon steel for used nuclear fuel containers. Corros Eng Sci Technol 52(sup1):65–69CrossRefGoogle Scholar
  4. 4.
    Shen Z, Li G, Li S (2000) Coupled calculation of dose rate and temperature in the near field of a high-level radioactive waste disposal repository. Radiat Prot (Taiyuan) 20(3):153–158Google Scholar
  5. 5.
    Van Loon LR, Glaus MA, Müller W (2007) Anion exclusion effects in compacted bentonites: towards a better understanding of anion diffusion. Appl Geochem 22(11):2536–2552CrossRefGoogle Scholar
  6. 6.
    Pushkareva R, Kalinichenko E, Lytovchenko A, Pushkarev A, Kadochnikov V, Plastynina M (2002) Irradiation effect on physico-chemical properties of clay minerals. Appl Clay Sci 21(1–2):117–123CrossRefGoogle Scholar
  7. 7.
    Liu N, Zhu Z, Wu L, Qin Z, Noël JJ, Shoesmith DW (2018) Predicting radionuclide release rates from spent nuclear fuel inside a failed waste disposal container using a finite element model. Corrosion 75(3):302–308CrossRefGoogle Scholar
  8. 8.
    Mohamed-Said M, Vuillemin B, Oltra R, Marion A, Trenty L, Crusset D (2017) Predictive modelling of the corrosion rate of carbon steel focusing on the effect of the precipitation of corrosion products. Corros Eng Sci Technol 52(sup1):178–185CrossRefGoogle Scholar
  9. 9.
    Manjanna J, Kozaki T, Sato S (2009) Fe (III)-montmorillonite: basic properties and diffusion of tracers relevant to alteration of bentonite in deep geological disposal. Appl Clay Sci 43(2):208–217CrossRefGoogle Scholar
  10. 10.
    Marty NC, Fritz B, Clément A, Michau N (2010) Modelling the long term alteration of the engineered bentonite barrier in an underground radioactive waste repository. Appl Clay Sci 47(1–2):82–90CrossRefGoogle Scholar
  11. 11.
    Guimarães V, Rodríguez-Castellón E, Algarra M, Rocha F, Bobos I (2016) Kinetics of uranyl ions sorption on heterogeneous smectite structure at pH 4 and 6 using a continuous stirred flow-through reactor. Appl Clay Sci 134:71–82CrossRefGoogle Scholar
  12. 12.
    Wu T, Wang Z, Wang H, Zhang Z, Van Loon LR (2017) Salt effects on Re(VII) and Se (IV) diffusion in bentonite. Appl Clay Sci 141:104–110CrossRefGoogle Scholar
  13. 13.
    Wang Z, Wang H, Li Q, Xu M, Guo Y, Li J, Wu T (2016) pH effect on Re(VII) and Se (IV) diffusion in compacted GMZ bentonite. Appl Geochem 73:1–7CrossRefGoogle Scholar
  14. 14.
    Akinwunmi B, Sun L, Hirvi JT, Kasa S, Pakkanen TA (2019) Influence of temperature on the swelling pressure of bentonite clay. Chem Phys 516:177–181CrossRefGoogle Scholar
  15. 15.
    Araque JC, Yadav SK, Shadeck M, Maroncelli M, Margulis CJ (2015) How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from Stokes–Einstein behavior explained. J Phys Chem B 119(23):7015–7029CrossRefGoogle Scholar
  16. 16.
    Wang C, Yang X, Wei F, He J, Qi L, Liu C (2019) The influence of pH on diffusion of 75Se (IV) in Beishan granite. J Radioanal Nucl Chem 319(1):365–377CrossRefGoogle Scholar
  17. 17.
    Glaus MA, Baeyens B, Bradbury MH, Jakob A, Van Loon LR, Yaroshchuk A (2007) Diffusion of 22Na and 85Sr in montmorillonite: evidence of interlayer diffusion being the dominant pathway at high compaction. Environ Sci Technol 41(2):478–485CrossRefGoogle Scholar
  18. 18.
    Bestel M, Glaus MA, Frick S, Gimmi T, Juranyi F, Van Loon LR, Diamond LW (2018) Combined tracer through-diffusion of HTO and 22Na through Na-montmorillonite with different bulk dry densities. Appl Geochem 93:158–166CrossRefGoogle Scholar
  19. 19.
    Van Loon LR, Mibus J (2015) A modified version of Archie’s law to estimate effective diffusion coefficients of radionuclides in argillaceous rocks and its application in safety analysis studies. Appl Geochem 59:85–94CrossRefGoogle Scholar
  20. 20.
    Wu T, Li J, Dai W, Xiao G, Shu F, Yao J, Shi L (2012) Effect of dry density on 125I diffusion in GMZ bentonite. Sci China Chem 55(9):1760–1764CrossRefGoogle Scholar
  21. 21.
    Tachi Y, Shibutani T, Sato H, Yui M (1998) Sorption and diffusion behavior of selenium in tuff. J Contam Hydrol 35(1–3):77–89CrossRefGoogle Scholar
  22. 22.
    Sato H, Miyamoto S (2004) Diffusion behaviour of selenite and hydroselenide in compacted bentonite. Appl Clay Sci 26(1–4):47–55CrossRefGoogle Scholar
  23. 23.
    Sato H, Yui M, Yoshikawa H (1995) Diffusion behavior for Se and Zr in sodium-bentonite. In: Proceedings of the 18th international symposium on the scientific basis for nuclear waste management. Part 1 (of 2). Materials Research Society, vol 176, no 1, pp 269–276Google Scholar
  24. 24.
    Ikonen J, Voutilainen M, Söderlund M, Jokelainen L, Siitari-Kauppi M, Martin A (2016) Sorption and diffusion of selenium oxyanions in granitic rock. J Contam Hydrol 192:203–211CrossRefGoogle Scholar
  25. 25.
    Holmboe M, Norrfors KK, Jonsson M, Wold S (2011) Effect of γ-radiation on radionuclide retention in compacted bentonite. Radiat Phys Chem 80(12):1371–1377CrossRefGoogle Scholar
  26. 26.
    Wang Z, Zhang J, Chen J, Zhang Z, Zheng Q, Li J, Wu T (2017) Diffusion behavior of Re(VII) in compacted illite-, hematite-and limonite-montmorillonite mixtures. J Radioanal Nucl Chem 311(1):655–661CrossRefGoogle Scholar
  27. 27.
    He J, Ma B, Kang M, Wang C, Nie Z, Liu C (2017) Migration of 75Se (IV) in crushed Beishan granite: effects of the iron content. J Hazard Mater 324:564–572CrossRefGoogle Scholar
  28. 28.
    Su C, Suarez DL (2000) Selenate and selenite sorption on iron oxides an infrared and electrophoretic study. Soil Sci Soc Am J 64(1):101–111CrossRefGoogle Scholar
  29. 29.
    Catalano JG, Zhang Z, Fenter P, Bedzyk MJ (2006) Inner-sphere adsorption geometry of Se (IV) at the hematite (100)–water interface. J Colloid Interf Sci 297(2):665–671CrossRefGoogle Scholar
  30. 30.
    Zhang Z, Wu T, Wang Z, Zhao S, Li H, Yang Z, Wu R (2017) Diffusion of Re(VII) in gamma-irradiated bentonite: effect of compacted dry density and pH. J Radioanal Nucl Chem 314(1):395–401CrossRefGoogle Scholar
  31. 31.
    Wu T, Wang Z, Tong Y, Wang Y, Van Loon LR (2018) Investigation of Re(VII) diffusion in bentonite by through-diffusion and modeling techniques. Appl Clay Sci 166:223–229CrossRefGoogle Scholar
  32. 32.
    Wu T, Wang H, Zheng Q, Zhao YL, Van Loon LR (2014) Diffusion behavior of Se (IV)and Re(VII) in GMZ bentonite. Appl Clay Sci 101:136–140CrossRefGoogle Scholar
  33. 33.
    Zheng M, Zhang QC, Huang YL, Lu DZ, Yu XM, Liu YM (2016) Determination of representative ground-water for corrosion assessment of candidate materials used in Beishan area preselected for high-level radioactive waste disposal repository. J Chin Soc Corros Prot 36(2):185–190Google Scholar
  34. 34.
    Savoye S, Goutelard F, Beaucaire C, Charles Y, Fayette A, Herbette M, Larabi Y, Coelho D (2011) Effect of temperature on the containment properties of argillaceous rocks: the case study of Callovo–Oxfordian claystones. J Contam Hydrol 125(1–4):102–112CrossRefGoogle Scholar
  35. 35.
    Gournis D, Mantaka-Marketou AE, Karakassides MA, Petridis D (2000) Effect of γ-irradiation on clays and organoclays: a Mössbauer and XRD study. Phys Chem Miner 27(7):514–521CrossRefGoogle Scholar
  36. 36.
    Martinez M, Giménez J, De Pablo J, Rovira M, Duro L (2006) Sorption of selenium (IV) and selenium (VI) onto magnetite. Appl Clay Sci 252(10):3767–3773Google Scholar
  37. 37.
    Matulová M, Urík M, Bujdoš M, Duborská E, Cesnek M, Miglierini MB (2019) Selenite sorption onto goethite: isotherm and ion-competitive studies, and effect of pH on sorption kinetics. Chem Pap, 1–11 CrossRefGoogle Scholar
  38. 38.
    He J, Shi Y, Yang X, Zhou W, Li Y, Liu C (2018) Influence of Fe(II) on the Se (IV) sorption under oxic/anoxic conditions using bentonite. Chemosphere 193:376–384CrossRefGoogle Scholar
  39. 39.
    Idemitsu K, Kozaki H, Yuhara M, Arima T, Inagaki Y (2016) Diffusion behavior of selenite in purified bentonite. Prog Nucl Energ 92:279–285CrossRefGoogle Scholar
  40. 40.
    Appelo CAJ, Van Loon LR, Wersin P (2010) Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus Clay. Geochim Cosmochim Acta 74(4):1201–1219CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Nuclear Science and EngineeringEast China University of TechnologyNanchangPeople’s Republic of China
  2. 2.Department of EngineeringHuzhou UniversityHuzhouPeople’s Republic of China

Personalised recommendations