Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 237–248 | Cite as

Historical review of pharmacological development and dosimetry of PSMA-based theranostics for prostate cancer

  • Nasim Vahidfar
  • Maryam Fallahpoor
  • Saeed Farzanehfar
  • Ghasemali Divband
  • Hojjat AhmadzadehfarEmail author
Article

Abstract

Many efforts have been made to introduce an appropriate radiopharmaceutical as a theranostic agent for metastatic castration-resistant prostate cancer. Prostate-specific membrane antigen (PSMA) is expressed in most types of prostate cancer (PCa), with only 5–10% of primary PCa lesions being PSMA-negative. When radiolabeled, PSMA tracers show outstanding features in terms of their theranostic properties. In this study, we discuss the pharmacological and physical characteristics of various radiopharmaceuticals used for the theranostic treatment of PCa. This review aims to outline the developments from the first radiopharmaceuticals PCa, including monoclonal antibodies, to the final gold standard in PSMA-based theranostics.

Keywords

Prostate cancer PSMA Theranostics Radionuclide therapy Dosimetry Prostanostics 

Notes

References

  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424CrossRefGoogle Scholar
  2. 2.
    Kulkarni HR, Singh A, Langbein T, Schuchardt C, Mueller D, Zhang J, Lehmann C, Baum RP (2018) Theranostics of prostate cancer: from molecular imaging to precision molecular radiotherapy targeting the prostate specific membrane antigen. Brit J Radiol 91(1091):20180308PubMedGoogle Scholar
  3. 3.
    Rahbar K, Afshar-Oromieh A, Jadvar H, Ahmadzadehfar H (2018) PSMA theranostics: current status and future directions. Mol Imaging 17:1536012118776068.  https://doi.org/10.1177/1536012118776068 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rahbar K, Afshar-Oromieh A, Seifert R, Wagner S, Schäfers M, Bögemann M, Weckesser M (2018) Diagnostic performance of 18 F-PSMA-1007 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging 45(12):2055–2061PubMedPubMedCentralGoogle Scholar
  5. 5.
    Thalgott M, Düwel C, Rauscher I, Heck MM, Haller B, Gafita A, Gschwend JE, Schwaiger M, Maurer T, Eiber M (2018) One-stop-shop whole-body 68 Ga-PSMA-11 PET/MRI compared with clinical nomograms for preoperative T and N staging of high-risk prostate cancer. J Nucl Med 59(12):1850–1856PubMedGoogle Scholar
  6. 6.
    Shrivastava S, Jain S, Kumar D, Soni SL, Sharma M (2019) A review on theranostics: an approach to targeted diagnosis and therapy. Asian J Pharm Res Dev 7(2):63–69Google Scholar
  7. 7.
    Virgolini I, Decristoforo C, Haug A, Fanti S, Uprimny C (2018) Current status of theranostics in prostate cancer. Eur J Nucl Med Mol Imaging 45(3):471–495PubMedGoogle Scholar
  8. 8.
    Rahbar K, Afshar-Oromieh A, Jadvar H, Ahmadzadehfar H (2018) PSMA theranostics: current status and future directions. Mol Imaging 17:1536012118776068PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kurth J, Krause B, Schwarzenböck S, Stegger L, Schäfers M, Rahbar K (2018) External radiation exposure, excretion, and effective half-life in 177 Lu-PSMA-targeted therapies. EJNMMI Res 8(1):32PubMedPubMedCentralGoogle Scholar
  10. 10.
    Rathke H, Giesel FL, Flechsig P, Kopka K, Mier W, Hohenfellner M, Haberkorn U, Kratochwil C (2018) Repeated 177Lu-labeled PSMA-617 radioligand therapy using treatment activities of up to 93 GBq. J Nucl Med 59(3):459–465PubMedGoogle Scholar
  11. 11.
    Ahmadzadehfar H, Schlolaut S, Fimmers R, Yordanova A, Hirzebruch S, Schlenkhoff C, Gaertner FC, Awang ZH, Hauser S, Essler M (2017) Predictors of overall survival in metastatic castration-resistant prostate cancer patients receiving [177Lu] Lu-PSMA-617 radioligand therapy. Oncotarget 8(61):103108PubMedPubMedCentralGoogle Scholar
  12. 12.
    Wright GL Jr, Grob BM, Haley C, Grossman K, Newhall K, Petrylak D, Troyer J, Konchuba A, Schellhammer PF, Moriarty R (1996) Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48(2):326–334PubMedGoogle Scholar
  13. 13.
    Lütje S, Heskamp S, Cornelissen AS, Poeppel TD, van den Broek SA, Rosenbaum-Krumme S, Bockisch A, Gotthardt M, Rijpkema M, Boerman OC (2015) PSMA ligands for radionuclide imaging and therapy of prostate cancer: clinical status. Theranostics 5(12):1388PubMedPubMedCentralGoogle Scholar
  14. 14.
    Psimadas D, Valotassiou V, Alexiou S, Tsougos I, Georgoulias P (2018) Radiolabeled mAbs as molecular imaging and/or therapy agents targeting PSMA. Cancer Invest 36(2):118–128PubMedGoogle Scholar
  15. 15.
    Nawaz S, Mullen GE, Blower PJ, Ballinger JR (2017) A 99mTc-labelled scFv antibody fragment that binds to prostate-specific membrane antigen. Nucl Med Commun 38(8):666PubMedPubMedCentralGoogle Scholar
  16. 16.
    Nagda SN, Mohideen N, Lo SS, Khan U, Dillehay G, Wagner R, Campbell S, Flanigan R (2007) Long-term follow-up of 111In-capromab pendetide (ProstaScint) scan as pretreatment assessment in patients who undergo salvage radiotherapy for rising prostate-specific antigen after radical prostatectomy for prostate cancer. Int J Radiat Oncol Biol Phys 67(3):834–840.  https://doi.org/10.1016/j.ijrobp.2006.09.026 CrossRefPubMedGoogle Scholar
  17. 17.
    Manyak MJ (2008) Indium-111 capromab pendetide in the management of recurrent prostate cancer. Expert Rev Anticancer Ther 8(2):175–181PubMedGoogle Scholar
  18. 18.
    Deb N, Goris M, Trisler K, Fowler S, Saal J, Ning S, Becker M, Marquez C, Knox S (1996) Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin Cancer Res 2(8):1289–1297PubMedGoogle Scholar
  19. 19.
    Wolf P, Freudenberg N, Bühler P, Alt K, Schultze-Seemann W, Wetterauer U, Elsässer-Beile U (2010) Three conformational antibodies specific for different PSMA epitopes are promising diagnostic and therapeutic tools for prostate cancer. Prostate 70(5):562–569PubMedGoogle Scholar
  20. 20.
    Bouchelouche K, Choyke PL, Capala J (2010) Prostate specific membrane antigen—a target for imaging and therapy with radionuclides. Discov Med 9(44):55PubMedPubMedCentralGoogle Scholar
  21. 21.
    Carroll PR (2003) Radiolabeled monoclonal antibodies specific to the extracellular domain of prostate-specific membrane antigen: preclinical studies in nude mice bearing LNCaP human prostate tumor: Smith-Jones PM, Vallabhajosula S, Navarro V, Bastidas D, Goldsmith SJ, Bander NH, Division of Nuclear Medicine, Department of Radiology, New York Presbyterian Hospital-Weill Medical College of Cornell University, New York, NY. J Nucl Med 2003; 44: 610–617. In: Urologic oncology: seminars and original investigations, vol 6. Elsevier, Amsterdam, pp 486–487Google Scholar
  22. 22.
    Bandekar A, Zhu C, Jindal R, Bruchertseifer F, Morgenstern A, Sofou S (2014) Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular a-particle therapy of cancer. J Nucl Med 55(1):107–114PubMedGoogle Scholar
  23. 23.
    Han M, Partin AW (2001) Current clinical applications of the 111In-capromab pendetide scan (ProstaScint® Scan, Cyt-356). Rev Urol 3(4):165PubMedPubMedCentralGoogle Scholar
  24. 24.
    Smith-Jones PM, Vallabahajosula S, Goldsmith SJ, Navarro V, Hunter CJ, Bastidas D, Bander NH (2000) In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Can Res 60(18):5237–5243Google Scholar
  25. 25.
    Evans JD, Jethwa KR, Ost P, Williams S, Kwon ED, Lowe VJ, Davis BJ (2018) Prostate cancer-specific PET radiotracers: a review on the clinical utility in recurrent disease. Pract Radiat Oncol 8(1):28–39PubMedGoogle Scholar
  26. 26.
    Zanoni L, Bossert I, Matti A, Schiavina R, Pultrone C, Fanti S, Nanni C (2018) A review discussing fluciclovine (18F) PET/CT imaging in the detection of recurrent prostate cancer. Fut Oncol 14(11):1101–1115Google Scholar
  27. 27.
    Ostero IJJ, Brodersen J (2018) Do men with lower urinary tract symptoms have an increased risk of advanced prostate cancer? BMJ 361:k1202.  https://doi.org/10.1136/bmj.k1202 CrossRefGoogle Scholar
  28. 28.
    Pomper MG, Musachio JL, Zhang J, Scheffel U, Zhou Y, Hilton J, Maini A, Dannals RF, Wong DF, Kozikowski AP (2002) 11C-MCG: synthesis, uptake selectivity, and primate PET of a probe for glutamate carboxypeptidase II (NAALADase). Mol Imaging 1(2):96–101PubMedGoogle Scholar
  29. 29.
    Benesova M, Schafer M, Bauder-Wust U, Afshar-Oromieh A, Kratochwil C, Mier W, Haberkorn U, Kopka K, Eder M (2015) Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med 56(6):914–920.  https://doi.org/10.2967/jnumed.114.147413 CrossRefPubMedGoogle Scholar
  30. 30.
    Backhaus P, Noto B, Avramovic N, Grubert LS, Huss S, Boegemann M, Stegger L, Weckesser M, Schaefers M, Rahbar K (2018) Targeting PSMA by radioligands in non-prostate disease—current status and future perspectives. Eur J Nucl Med Mol Imaging 45(5):860–877PubMedGoogle Scholar
  31. 31.
    Machulkin AE, Ivanenkov YA, Aladinskaya AV, Veselov MS, Aladinskiy VA, Beloglazkina EK, Koteliansky VE, Shakhbazyan AG, Sandulenko YB, Majouga AG (2016) Small-molecule PSMA ligands. Current state, SAR and perspectives. J Drug Target 24(8):679–693PubMedGoogle Scholar
  32. 32.
    Awang ZH, Essler M, Ahmadzadehfar H (2018) Radioligand therapy of metastatic castration-resistant prostate cancer: current approaches. Radiat Oncol 13(1):98.  https://doi.org/10.1186/s13014-018-1037-7 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Majer P, Jančařík A, Krečmerová M, Ts Tichý, Ls Tenora, Wozniak K, Wu Y, Pommier E, Ferraris D, Rais R (2016) Discovery of orally available prodrugs of the glutamate carboxypeptidase II (GCPII) inhibitor 2-phosphonomethylpentanedioic acid (2-PMPA). J Med Chem 59(6):2810–2819PubMedGoogle Scholar
  34. 34.
    Liu T, Toriyabe Y, Kazak M, Berkman CE (2008) Pseudoirreversible inhibition of prostate-specific membrane antigen by phosphoramidate peptidomimetics. Biochemistry 47(48):12658–12660PubMedGoogle Scholar
  35. 35.
    Stoermer D, Vitharana D, Hin N, Delahanty G, Duvall B, Ferraris DV, Grella BS, Hoover R, Rojas C, Shanholtz MK (2012) Design, synthesis, and pharmacological evaluation of glutamate carboxypeptidase II (GCPII) inhibitors based on thioalkylbenzoic acid scaffolds. J Med Chem 55(12):5922–5932PubMedGoogle Scholar
  36. 36.
    Ferraris DV, Majer P, Ni C, Slusher CE, Rais R, Wu Y, Wozniak KM, Alt J, Rojas C, Slusher BS (2013) δ-Thiolactones as prodrugs of thiol-based glutamate carboxypeptidase II (GCPII) inhibitors. J Med Chem 57(1):243–247PubMedPubMedCentralGoogle Scholar
  37. 37.
    Kozikowski AP, Nan F, Conti P, Zhang J, Ramadan E, Bzdega T, Wroblewska B, Neale JH, Pshenichkin S, Wroblewski JT (2001) Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). J Med Chem 44(3):298–301PubMedGoogle Scholar
  38. 38.
    Robu S, Schmidt A, Eiber M, Schottelius M, Günther T, Yousefi BH, Schwaiger M, Wester H-J (2018) Synthesis and preclinical evaluation of novel 18 F-labeled Glu-urea-Glu-based PSMA inhibitors for prostate cancer imaging: a comparison with 18 F-DCFPyl and 18 F-PSMA-1007. EJNMMI Res 8(1):30PubMedPubMedCentralGoogle Scholar
  39. 39.
    Bouchelouche K, Turkbey B, Choyke PL (2016) PSMA PET and radionuclide therapy in prostate cancer. Semin Nucl Med 46(6):522–535PubMedPubMedCentralGoogle Scholar
  40. 40.
    Cho SY, Gage KL, Mease RC, Senthamizhchelvan S, Holt DP, Jeffrey-Kwanisai A, Endres CJ, Dannals RF, Sgouros G, Lodge M (2012) Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med 53(12):1883PubMedPubMedCentralGoogle Scholar
  41. 41.
    Vallabhajosula S, Nikolopoulou A, Babich JW, Osborne JR, Tagawa ST, Lipai I, Solnes L, Maresca KP, Armor T, Joyal JL (2014) 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J Nucl Med 55(11):1791–1798PubMedGoogle Scholar
  42. 42.
    Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA, Antonarakis ES, Fan H, Dannals RF, Chen Y (2015) Initial evaluation of [18F] DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol 17(4):565–574PubMedPubMedCentralGoogle Scholar
  43. 43.
    Rowe SP, Drzezga A, Neumaier B, Dietlein M, Gorin MA, Zalutsky MR, Pomper MG (2016) Prostate-specific membrane antigen-targeted radiohalogenated PET and therapeutic agents for prostate cancer. J Nucl Med 57(Suppl 3):90SPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pillai MRA, Nanabala R, Joy A, Sasikumar A, Knapp FFR (2016) Radiolabeled enzyme inhibitors and binding agents targeting PSMA: effective theranostic tools for imaging and therapy of prostate cancer. Nucl Med Biol 43(11):692–720PubMedGoogle Scholar
  45. 45.
    Rowe SP, Macura KJ, Mena E, Blackford AL, Nadal R, Antonarakis ES, Eisenberger M, Carducci M, Fan H, Dannals RF (2016) PSMA-based [18F] DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol Imaging Biol 18(3):411–419PubMedPubMedCentralGoogle Scholar
  46. 46.
    Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, Sgouros G, Mease RC, Pomper MG (2011) 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid,[18F] DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res 17(24):7645–7653PubMedPubMedCentralGoogle Scholar
  47. 47.
    Shen C, Minn I, Chen Y, Mease R, Brummet M, Pomper M, Kiess A (2016) Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen in a micrometastatic model of prostate cancer. Int J Radiat Oncol Biol Phys 96(2):S110Google Scholar
  48. 48.
    Cardinale J, Martin R, Remde Y, Schäfer M, Hienzsch A, Hübner S, Zerges A-M, Marx H, Hesse R, Weber K (2017) Procedures for the GMP-compliant production and quality control of [18F] PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals 10(4):77PubMedCentralGoogle Scholar
  49. 49.
    Eiber M, Fendler WP, Rowe SP, Calais J, Hofman MS, Maurer T, Schwarzenboeck SM, Kratowchil C, Herrmann K, Giesel FL (2017) Prostate-specific membrane antigen ligands for imaging and therapy. J Nucl Med 58(Supplement 2):67S–76SPubMedGoogle Scholar
  50. 50.
    Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, Kesch C, Tolstov Y, Singer S, Grabe N (2017) F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging 44(4):678–688PubMedGoogle Scholar
  51. 51.
    Rahbar K, Weckesser M, Ahmadzadehfar H, Schafers M, Stegger L, Bogemann M (2018) Advantage of (18)F-PSMA-1007 over (68)Ga-PSMA-11 PET imaging for differentiation of local recurrence vs. urinary tracer excretion. Eur J Nucl Med Mol Imaging 45(6):1076–1077.  https://doi.org/10.1007/s00259-018-3952-0 CrossRefPubMedGoogle Scholar
  52. 52.
    Barrett JA, Coleman RE, Goldsmith SJ, Vallabhajosula S, Petry NA, Cho S, Armor T, Stubbs JB, Maresca KP, Stabin MG (2013) First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med 54(3):380–387PubMedGoogle Scholar
  53. 53.
    Hillier SM, Maresca KP, Femia FJ, Marquis JC, Foss CA, Nguyen N, Zimmerman CN, Barrett JA, Eckelman WC, Pomper MG (2009) Preclinical evaluation of novel glutamate–urea–lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Can Res 69(17):6932–6940Google Scholar
  54. 54.
    Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, Joyal J, Kopka K, Debus J, Babich JW (2014) Radiation dosimetry and first therapy results with a 124 I/131 I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging 41(7):1280–1292PubMedPubMedCentralGoogle Scholar
  55. 55.
    Afshar-Oromieh A, Haberkorn U, Hadaschik B, Habl G, Eder M, Eisenhut M, Schlemmer H-P, Roethke MC (2013) PET/MRI with a 68 Ga-PSMA ligand for the detection of prostate cancer. Eur J Nucl Med Mol Imaging 40(10):1629–1630PubMedGoogle Scholar
  56. 56.
    Yang X, Mease RC, Pullambhatla M, Lisok A, Chen Y, Foss CA, Wang Y, Shallal H, Edelman H, Hoye AT (2015) [18F] fluorobenzoyllysinepentanedioic acid carbamates: new scaffolds for positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA). J Med Chem 59(1):206–218PubMedPubMedCentralGoogle Scholar
  57. 57.
    Pyka T, Weirich G, Einspieler I, Maurer T, Theisen J, Hatzichristodoulou G, Schwamborn K, Schwaiger M, Eiber M (2016) 68 Ga-PSMA-HBED-CC PET for differential diagnosis of suggestive lung lesions in patients with prostate cancer. J Nucl Med 57(3):367–371PubMedGoogle Scholar
  58. 58.
    Oh SW, Cheon GJ (2018) Prostate-specific membrane antigen PET imaging in prostate cancer: opportunities and challenges. Korean J Radiol 19(5):819–831PubMedPubMedCentralGoogle Scholar
  59. 59.
    Lenzo NP, Meyrick D, Turner JH (2018) Review of gallium-68 PSMA PET/CT imaging in the management of prostate cancer. Diagnostics (Basel).  https://doi.org/10.3390/diagnostics8010016 CrossRefGoogle Scholar
  60. 60.
    Ebenhan T, Vorster M, Marjanovic-Painter B, Wagener J, Suthiram J, Modiselle M, Mokaleng B, Zeevaart JR, Sathekge M (2015) Development of a single vial kit solution for radiolabeling of 68 Ga-DKFZ-PSMA-11 and its performance in prostate cancer patients. Molecules 20(8):14860–14878PubMedPubMedCentralGoogle Scholar
  61. 61.
    Seifert R, Schafigh D, Bögemann M, Weckesser M, Rahbar K (2019) Detection of local relapse of prostate cancer with 18F-PSMA-1007. Clin Nucl Med 44(6):e394–e395PubMedGoogle Scholar
  62. 62.
    Afshar-Oromieh A, Holland-Letz T, Giesel FL, Kratochwil C, Mier W, Haufe S, Debus N, Eder M, Eisenhut M, Schäfer M (2017) Diagnostic performance of 68 Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging 44(8):1258–1268PubMedPubMedCentralGoogle Scholar
  63. 63.
    Afshar-Oromieh A, Hetzheim H, Kratochwil C, Benesova M, Eder M, Neels OC, Eisenhut M, Kübler W, Holland-Letz T, Giesel FL (2015) The novel theranostic PSMA-ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry and first evaluation of tumor lesions. J Nucl Med 115:161299Google Scholar
  64. 64.
    Herrmann K, Bluemel C, Weineisen M, Schottelius M, Wester H-J, Czernin J, Eberlein U, Beykan S, Lapa C, Riedmiller H (2015) Biodistribution and radiation dosimetry for a probe targeting prostate-specific membrane antigen for imaging and therapy. J Nucl Med 56(6):855PubMedPubMedCentralGoogle Scholar
  65. 65.
    Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomäcker K, Schmidt M, Dietlein F, Zlatopolskiy BD, Krapf P (2015) Comparison of [18F] DCFPyL and [68 Ga] Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol 17(4):575–584PubMedPubMedCentralGoogle Scholar
  66. 66.
    Afshar-Oromieh A, Hetzheim H, Kubler W, Kratochwil C, Giesel FL, Hope TA, Eder M, Eisenhut M, Kopka K, Haberkorn U (2016) Radiation dosimetry of (68)Ga-PSMA-11 (HBED-CC) and preliminary evaluation of optimal imaging timing. Eur J Nucl Med Mol Imaging 43(9):1611–1620.  https://doi.org/10.1007/s00259-016-3419-0 CrossRefPubMedGoogle Scholar
  67. 67.
    Rahbar K, Ahmadzadehfar H, Kratochwil C, Haberkorn U, Schafers M, Essler M, Baum RP, Kulkarni HR, Schmidt M, Drzezga A, Bartenstein P, Pfestroff A, Luster M, Lutzen U, Marx M, Prasad V, Brenner W, Heinzel A, Mottaghy FM, Ruf J, Meyer PT, Heuschkel M, Eveslage M, Bogemann M, Fendler WP, Krause BJ (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 58(1):85–90.  https://doi.org/10.2967/jnumed.116.183194 CrossRefPubMedGoogle Scholar
  68. 68.
    Hofman MS, Violet J, Hicks RJ, Sandhu S (2018) [(177)Lu]-PSMA-617 radionuclide therapy in patients with metastatic castration-resistant prostate cancer—author’s reply. Lancet Oncol 19(8):e373.  https://doi.org/10.1016/S1470-2045(18)30534-5 CrossRefPubMedGoogle Scholar
  69. 69.
    Akbarian R, Amoui M, Ghodsirad M, Khoshbakht S, Mofid B, Kaghazchi F, Tavakoli M, Pirayesh E, Ahmadzadehfar H (2019) Efficacy and safety of 177Lutetium-prostate-specific membrane antigen therapy in metastatic castration-resistant prostate cancer patients: first experience in West Asia—a prospective study. World J Nucl Med 18(3):258–265Google Scholar
  70. 70.
    Roll W, Bräuer A, Weckesser M, Bögemann M, Rahbar K (2018) Long-term survival and excellent response to repeated 177Lu-prostate-specific membrane antigen 617 radioligand therapy in a patient with advanced metastatic castration-resistant prostate cancer. Clin Nucl Med 43(10):755–756PubMedGoogle Scholar
  71. 71.
    Rahbar K, Bögeman M, Yordanova A, Eveslage M, Schäfers M, Essler M, Ahmadzadehfar H (2018) Delayed response after repeated 177Lu-PSMA-617 radioligand therapy in patients with metastatic castration resistant prostate cancer. Eur J Nucl Med Mol Imaging 45(2):243–246PubMedGoogle Scholar
  72. 72.
    Kessel K, Seifert R, Schäfers M, Weckesser M, Schlack K, Boegemann M, Rahbar K (2019) Second line chemotherapy and visceral metastases are associated with poor survival in patients with mCRPC receiving 177Lu-PSMA-617. Theranostics 9(17):4841PubMedPubMedCentralGoogle Scholar
  73. 73.
    Rahbar K, Hofman MS, Schrader AJ, Boegemann M (2019) A self-fulfilling prophecy: comparing 177Lu-PSMA radioligand therapy in taxane naïve vs post-taxane metastasized prostate cancer patients? J Nucl Med.  https://doi.org/10.2967/jnumed.119.228742 CrossRefPubMedGoogle Scholar
  74. 74.
    Yadav MP, Ballal S, Tripathi M, Damle NA, Sahoo RK, Seth A, Bal C (2017) 177Lu-DKFZ-PSMA-617 therapy in metastatic castration resistant prostate cancer: safety, efficacy, and quality of life assessment. Eur J Nucl Med Mol Imaging 44(1):81–91PubMedGoogle Scholar
  75. 75.
    Kabasakal L, AbuQbeitah M, Aygün A, Yeyin N, Ocak M, Demirci E, Toklu T (2015) Pre-therapeutic dosimetry of normal organs and tissues of 177Lu-PSMA-617 prostate-specific membrane antigen (PSMA) inhibitor in patients with castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 42(13):1976–1983PubMedGoogle Scholar
  76. 76.
    Alonso O, dos Santos G, Fontes MG, Balter H, Engler H (2018) 68 Ga-PSMA and 11 C-Choline comparison using a tri-modality PET/CT-MRI (3.0 T) system with a dedicated shuttle. Eur J Hybrid Imaging 2(1):9PubMedPubMedCentralGoogle Scholar
  77. 77.
    Berliner C, Tienken M, Frenzel T, Kobayashi Y, Helberg A, Kirchner U, Klutmann S, Beyersdorff D, Budäus L, Wester H-J (2017) Detection rate of PET/CT in patients with biochemical relapse of prostate cancer using [68 Ga] PSMA I&T and comparison with published data of [68 Ga] PSMA HBED-CC. Eur J Nucl Med Mol Imaging 44(4):670–677PubMedGoogle Scholar
  78. 78.
    Okamoto S, Thieme A, Allmann J, D’Alessandria C, Maurer T, Retz M, Tauber R, Heck MM, Wester H-J, Tamaki N (2017) Radiation dosimetry for 177Lu-PSMA I&T in metastatic castration-resistant prostate cancer: absorbed dose in normal organs and tumor lesions. J Nucl Med 58(3):445–450PubMedGoogle Scholar
  79. 79.
    Umbricht CA, Benešová M, Schmid RM, Türler A, Schibli R, van der Meulen NP, Müller C (2017) 44 Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617—preclinical investigations in comparison with 68 Ga-PSMA-11 and 68 Ga-PSMA-617. EJNMMI Res 7(1):9PubMedPubMedCentralGoogle Scholar
  80. 80.
    Eppard E, de la Fuente A, Benešová M, Khawar A, Bundschuh RA, Gärtner FC, Kreppel B, Kopka K, Essler M, Rösch F (2017) Clinical translation and first in-human use of [44Sc] Sc-PSMA-617 for PET imaging of metastasized castrate-resistant prostate cancer. Theranostics 7(18):4359PubMedPubMedCentralGoogle Scholar
  81. 81.
    Pérez-Malo M, Szabó G, Eppard E, Vagner A, Brücher E, Tóth I, Maiocchi A, Suh EH, Kovács ZN, Baranyai Z (2018) Improved efficacy of synthesizing* MIII-labeled DOTA complexes in binary mixtures of water and organic solvents. A combined radio-and physicochemical study. Inorg Chem 57(10):6107–6117PubMedPubMedCentralGoogle Scholar
  82. 82.
    Eppard E, de la Fuente A, Mohr N, Allmeroth M, Zentel R, Miederer M, Pektor S, Rösch F (2018) Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging. EJNMMI Res 8(1):16PubMedPubMedCentralGoogle Scholar
  83. 83.
    Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W, Haberkorn U, Giesel FL, Morgenstern A (2017) Targeted a-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med 58(10):1624–1631PubMedGoogle Scholar
  84. 84.
    Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, Kopka K, Apostolidis C, Haberkorn U, Morgenstern A (2016) 225Ac-PSMA-617 for PSMA-targeted a-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med 57(12):1941–1944PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Nasim Vahidfar
    • 1
  • Maryam Fallahpoor
    • 1
  • Saeed Farzanehfar
    • 1
  • Ghasemali Divband
    • 2
  • Hojjat Ahmadzadehfar
    • 3
    Email author
  1. 1.Department of Nuclear Medicine, Vali-Asr HospitalTehran University of Medical SciencesTehranIran
  2. 2.Nuclear Medicine Research CenterMashhad University of Medical Sciences, Qaem Educational, Research and Treatment CenterMashhadIran
  3. 3.Department of Nuclear MedicineUniversity Hospital BonnBonnGermany

Personalised recommendations