Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 827–838 | Cite as

Removal of Co(II) from aqueous solution with functionalized metal–organic frameworks (MOFs) composite

  • Guoyuan Yuan
  • Yin TianEmail author
  • Min Li
  • Yang Zeng
  • Hong Tu
  • Jiali Liao
  • Jijun Yang
  • Yuanyou Yang
  • Ning LiuEmail author


In this study, four functionalized metal–organic frameworks (MOFs) composite (UiO-66-COOCH3, UiO-66-CONH2, UiO-66-CN and UiO-66-SO3H) were successfully prepared by post-synthesis modification for the removal of Co(II) from simulated 60Co radioactive wastewater. Benefiting from the strong uptake ability of these functional MOFs, the as-synthesized MOFs adsorbents exhibit an extraordinary adsorption performance towards Co(II), and their saturated adsorption capacity reached 334.4 mg g−1 (UiO-66-COOCH3), 339.7 mg g−1 (UiO-66-CONH2), 274.6 mg g−1 (UiO-66-CN) and 293.7 mg g−1 (UiO-66-SO3H), respectively. In addition, density functional theory (DFT) was used to study the adsorption mechanism of Co(II) by MOFs. The results of theoretical calculation revealed that the functional groups of MOFs have strong chelating ability to Co(II), which gradually increase with the order of nitrile group, sulfonic acid group, ester group and amide group, and the order is also consistent with the adsorption amount of Co(II) in the experiment. All these works suggest that the synthesized MOFs are potential candidate for 60Co seperation.


Removal Co(II) MOFs Experimental DFT 



This work was supported by the National Natural Science Foundation of China (Grant No. 21876122).

Supplementary material

10967_2019_6764_MOESM1_ESM.docx (260 kb)
Supplementary material 1 (DOCX 259 kb)


  1. 1.
    Adams R, Zboray R (2017) Gamma radiography and tomography with a CCD camera and Co-60 source. Appl Radiat Isot 127:82–86PubMedGoogle Scholar
  2. 2.
    Li DM, Li FZ, Liao JL, Yang JJ, Li B, Chen YM, Yang YY, Zhang JS, Tang J, Liu N (2016) Efficient removal of Co(II) from aqueous solution by titanate sodium nanotubes. Nucl Sci Tech 27:143Google Scholar
  3. 3.
    Lai DE, Wang M, Zhang CY (2014) Quality trait variations in [60Co]-irradiated wheat and high-molecular-weight glutenin subunit mutant identification. Genet Mol Res 13:9024–9031PubMedGoogle Scholar
  4. 4.
    Cao Z, Song Y, Zhang C, Li M (1993) Recent status on cobalt-60 gamma ray radiation sources production and its application in China. Radiat Phys Chem 42:469–471Google Scholar
  5. 5.
    Jang KW, Yoo WJ, Moon J, Han KT, Park JY, Lee B (2012) Measurements of relative depth doses and Cerenkov light using a scintillating fiber-optic dosimeter with Co-60 radiotherapy source. Appl Radiat Isot 70:274–277PubMedGoogle Scholar
  6. 6.
    Cheang CY, Mohamed N (2016) Removal of cobalt from ammonium chloride solutions using a batch cell through an electrogenerative process. Sep Purif Technol 162:154–161Google Scholar
  7. 7.
    Liu M, Chen C, Hu J, Wu X, Wang X (2011) Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal. J Phys Chem C 115:25234–25240Google Scholar
  8. 8.
    Wellens S, Thijs B, Binnemans K (2012) An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem 14:1657–1665Google Scholar
  9. 9.
    Narin I, Soylak M (2003) Enrichment and determinations of nickel(II), cadmium(II), copper(II), cobalt(II) and lead(II) ions in natural waters, table salts, tea and urine samples as pyrrolydine dithiocarbamate chelates by membrane filtration–flame atomic absorption spectrometry combination. Anal Chim Acta 493:205–212Google Scholar
  10. 10.
    Piscureanu A, Chican I, Varasteanu D, Dulama M, Ruse M (2015) Aspects concerning the selection of ion exchange resin for low level radwaste waters decontamination. Rev ChimBucharest 66:1819–1825Google Scholar
  11. 11.
    Gogoi D, Shanmugamani AG, Rao SVS, Kumar T, Sinha PK (2012) Studies on removal of cobalt from an alkaline waste using synthetic calcium hydroxyapatite. J Radioanal Nucl Chem 298:337–344Google Scholar
  12. 12.
    Fang F, Kong L, Huang J, Wu S, Zhang K, Wang X, Sun B, Jin Z, Wang J, Huang XJ, Liu J (2014) Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J Hazard Mater 270:1–10PubMedGoogle Scholar
  13. 13.
    Khajeh M, Heidari ZS, Sanchooli E (2011) Synthesis, characterization and removal of lead from water samples using lead-ion imprinted polymer. Chem Eng J 166:1158–1163Google Scholar
  14. 14.
    Liu Y, Zhong G, Liu Z, Meng M, Jiang Y, Ni L, Guo W, Liu F (2015) Preparation of core–shell ion imprinted nanoparticles via photoinitiated polymerization at ambient temperature for dynamic removal of cobalt in aqueous solution. RSC Adv 5:85691–85704Google Scholar
  15. 15.
    Guo WL, Chen R, Liu Y, Meng MJ, Meng XG, Hu ZY, Song ZL (2013) Preparation of ion-imprinted mesoporous silica SBA-15 functionalized with triglycine for selective adsorption of Co(II). Colloid Surface A 436:693–703Google Scholar
  16. 16.
    Jamiu ZA, Saleh TA, Ali SA (2017) Biogenic glutamic acid-based resin: its synthesis and application in the removal of cobalt(II). J Hazard Mater 327:44–54PubMedGoogle Scholar
  17. 17.
    Bordoloi N, Goswami R, Kumar M, Kataki R (2017) Biosorption of Co (II) from aqueous solution using algal biochar: kinetics and isotherm studies. Bioresource Technol 244:1465–1469Google Scholar
  18. 18.
    Zhu L, Sheng D, Xu C, Dai X, Silver MA, Li J, Li P, Wang Y, Wang Y, Chen L, Xiao C, Chen J, Zhou R, Zhang C, Farha OK, Chai Z, Albrecht-Schmitt TE, Wang S (2017) Identifying the recognition site for selective trapping of 99TcO4 in a hydrolytically stable and radiation resistant cationic metal-organic framework. J Am Chem Soc 139:14873–14876PubMedGoogle Scholar
  19. 19.
    Xie DH, Ma Y, Gu Y, Zhou HJ, Zhang HM, Wang GZ, Zhang YX, Zhao HJ (2017) Bifunctional NH2-MIL-88(Fe) metal–organic framework nanooctahedra for highly sensitive detection and efficient removal of arsenate in aqueous media. J Mater Chem A 5:23794–23804Google Scholar
  20. 20.
    Yu Z, Deschamps J, Hamon L, Karikkethu Prabhakaran P, Pré P (2017) Hydrogen adsorption and kinetics in MIL-101(Cr) and hybrid activated carbon-MIL-101(Cr) materials. Int J Hydrogen Energ 42:8021–8031Google Scholar
  21. 21.
    Chen J, Li K, Chen L, Liu R, Huang X, Ye D (2014) Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem 16:2490Google Scholar
  22. 22.
    Liu X, Li H, Pan H, Zhang H, Huang S, Yang K, Xue W, Yang S (2016) Efficient catalytic conversion of carbohydrates into 5-ethoxymethylfurfural over MIL-101-based sulfated porous coordination polymers. J Energy Chem 25:523–530Google Scholar
  23. 23.
    Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Ferey G (2006) Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Edit 45:5974–5978Google Scholar
  24. 24.
    Liu K, Guo P, Liu L, Shi X (2017) Fluorescence enhancement of a novel pyrazine coupled rhodamine derivative for the paramagnetic Co2+ detection. Sensors Actuat B Chem 250:667–672Google Scholar
  25. 25.
    Sheng DP, Zhu L, Xu C, Xiao C, Wang Y, Wang Y, Chen L, Diwu J, Chen J, Chai Z, Albrecht-Schmitt TE, Wang S (2017) Efficient and selective uptake of TcO4 by a cationic metal-organic framework material with open Ag+ sites. Environ Sci Technol 51:3471–3479PubMedGoogle Scholar
  26. 26.
    Ma W, Xu L, Li X, Shen S, Wu M, Bai Y, Liu H (2017) Cysteine-functionalized metal-organic framework: facile synthesis and high efficient enrichment of N-linked glycopeptides in cell lysate. ACS Appl Mater Inter 9(23):19562–19568Google Scholar
  27. 27.
    Esrafili L, Safarifard V, Tahmasebi E, Esrafili MD, Morsali A (2018) Functional group effect of isoreticular metal-organic frameworks on heavy metal ion adsorption. New J Chem 42:8864–8873Google Scholar
  28. 28.
    Yuan G, Tu H, Li M, Liu J, Zhao C, Liao J, Yang Y, Yang J, Liu N (2019) Glycine derivative-functionalized metal-organic framework (MOF) materials for Co(II) removal from aqueous solution. Appl Surf Sci 466:903–910Google Scholar
  29. 29.
    Yuan G, Tian Y, Liu J, Tu H, Liao J, Yang J, Yang Y, Wang D, Liu N (2017) Schiff base anchored on metal-organic framework for Co(II) removal from aqueous solution. Chem Eng J 326:691–699Google Scholar
  30. 30.
    Yuan G, Tu H, Liu J, Zhao C, Liao J, Yang Y, Yang J, Liu N (2018) A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(II) from aqueous solutions. Chem Eng J 333:280–288Google Scholar
  31. 31.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864Google Scholar
  32. 32.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133Google Scholar
  33. 33.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824Google Scholar
  34. 34.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100Google Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin EL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01, Gaussian, Inc., Wallingford CTGoogle Scholar
  36. 36.
    Goerigk L, Reimers JR (2013) Efficient methods for the quantum chemical treatment of protein structures: the effects of london-dispersion and basis-set incompleteness on peptide and water-cluster geometries. J Chem Theory Comput 9:3240–3251PubMedGoogle Scholar
  37. 37.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104PubMedGoogle Scholar
  38. 38.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465PubMedGoogle Scholar
  39. 39.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy-adjusted abinitio pseudopotentials for the first row transition elements. J Chem Phys 86:866–872Google Scholar
  40. 40.
    Martin JM, Sundermann A (2001) Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: the atoms Ga-Kr and In-Xe. J Chem Phys 114:3408–3420Google Scholar
  41. 41.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396PubMedGoogle Scholar
  42. 42.
    Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2011) Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. J Phys Chem B 115:14556–14562PubMedGoogle Scholar
  43. 43.
    Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. J Chem Phys 23:1833–1840Google Scholar
  44. 44.
    Angyan JG, Loos M, Mayer I (1994) Covalent bond orders and atomic valence indices in the topological theory of atoms in molecules. J Phys Chem 98:5244–5248Google Scholar
  45. 45.
    Mayer I (1986) On bond orders and valences in the Ab initio quantum chemical theory. Int J Quantum Chem 29:73–84Google Scholar
  46. 46.
    Mayer I (1986) Bond orders and valences from ab initio wave functions. Int J Quantum Chem 29:477–483Google Scholar
  47. 47.
    Simons WW (1978) Sadtler handbook of infrared spectra. Sadtler Research LaboratoriesGoogle Scholar
  48. 48.
    Gao G, Nie LJ, Yang SJ, Jin PK, Chen RZ, Ding DH, Wang XC, Wang WD, Wu K, Zhang QH (2018) Well-defined strategy for development of adsorbent using metal organic frameworks (MOF) template for high performance removal of hexavalent chromium. Appl Surf Sci 457:1208–1217Google Scholar
  49. 49.
    Liu J, Zhao C, Yuan G, Li F, Yang J, Liao J, Yang Y, Liu N (2018) Adsorption behavior of U(VI) on doped polyaniline: the effects of carbonate and its complexes. Radiochim Acta 106:437–452Google Scholar
  50. 50.
    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361Google Scholar
  51. 51.
    Freundlich U (1906) Die adsorption in lusungen. Z Phys Chem 385–470Google Scholar
  52. 52.
    Alqadami AA, Khan MA, Siddiqui MR, Alothman ZA (2018) Development of citric anhydride anchored mesoporous MOF through post synthesis modification to sequester potentially toxic lead(II) from water. Micropor Mesopor Mat 261:198–206Google Scholar
  53. 53.
    Li F, Tang Y, Wang H, Yang J, Li S, Liu J, Tu H, Liao J, Yang Y, Liu N (2017) Functionalized hydrothermal carbon derived from waste pomelo peel as solid-phase extractant for the removal of uranyl from aqueous solution. Environ Sci Pollut Res 24:22321–22331Google Scholar
  54. 54.
    Song W, Hu J, Zhao Y, Shao D, Li J (2013) Efficient removal of cobalt from aqueous solution using β-cyclodextrin modified graphene oxide. RSC Adv 3:9514Google Scholar
  55. 55.
    Xing M, Wang J (2016) Nanoscaled zero valent iron/graphene composite as an efficient adsorbent for Co(II) removal from aqueous solution. J Colloid Interf Sci 474:119–128Google Scholar
  56. 56.
    Anirudhan TS, Deepa JR, Christa J (2016) Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt(II) from nuclear industry wastewater samples. J Colloid Interf Sci 467:307–320Google Scholar
  57. 57.
    Yuan GY, Zhao CS, Tu H, Li M, Liu J, Liao JL, Yang YY, Yang JJ, Liu N (2018) Removal of Co(II) from aqueous solution with Zr-based magnetic metal-organic framework composite. Inorg Chim Acta 483:488–495Google Scholar
  58. 58.
    Khan AA, Sing RP (1987) Adsorption Thermodynamics of Carbofuran on Sn(IV) Arsenosilicate in H+, Na+ and Ca2+ Forms. Colloid Surface 24:33–42Google Scholar
  59. 59.
    Mech K, Zabinski P, Kowalik R (2013) Co-Reduction of Electrochemically Active [Co(H2O)6]2+ and [CoCl(H2O)5]+ Complexes onto Gold Electrode. J Electrochem Soc 160:D246–D250Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and TechnologySichuan UniversityChengduPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringChongqing University of Science and TechnologyChongqingPeople’s Republic of China
  3. 3.School of PharmacyChengdu University of Traditional Chinese MedicineChengduPeople’s Republic of China

Personalised recommendations