Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 853–859 | Cite as

Laboratory-scale studies on the removal of cesium with a submerged membrane adsorption reactor

  • Fei HanEmail author
  • Cuiling Zhang
  • Kang Wang
  • Kai Wang


This study developed a submerged membrane adsorption reactor system and conducted laboratory scale experiments to remove cesium using copper ferrocyanide (CuFC). The differences in cesium removal efficiency and membrane fouling by using a countercurrent two-stage adsorption (CTA) process and the conventional adsorption process were discussed. The 144 h of the continuous experiment showed that the effluent concentration remained constant with time, and the highest value of the decontamination factor approached 103. The CTA process possesses a higher concentration of suspended CuFC and a lower membrane fouling rate.


Cesium Adsorption Copper ferrocyanide Laboratory scale test Reactor 



The research was supported by the National Natural Science Foundation of China (Grant No. 51608165) and the China Scholarship Council (File No. 201806705003).

Supplementary material

10967_2019_6763_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)


  1. 1.
    Tsumune D, Tsubono T, Aoyama M, Hirose K (2012) Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model. J Environ Radioact 111:100–108CrossRefGoogle Scholar
  2. 2.
    Inomata Y, Aoyama M, Tsubono T, Tsumune D, Kumamoto Y, Nagai H, Yamagata T, Kajino M, Tanaka YT, Sekiyama TT, Oka E, Yamada M (2018) Estimate of Fukushima-derived radiocaesium in the North Pacific Ocean in summer 2012. J Radioanal Nucl Chem 318:1587–1596CrossRefGoogle Scholar
  3. 3.
    Ten Hoeve JE, Jacobson MZ (2012) Worldwide health effects of the Fukushima Daiichi nuclear accident. Energy Environ Sci 5:8743–8757CrossRefGoogle Scholar
  4. 4.
    Alby D, Charnay C, Heran M, Prelot B, Zajac J (2017) Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity—a review. J Hazard Mater 344:511–530CrossRefGoogle Scholar
  5. 5.
    Rogers H, Bowers J, Gates-Anderson D (2012) An isotope dilution-precipitation process for removing radioactive cesium from wastewater. J Hazard Mater 243:124–129CrossRefGoogle Scholar
  6. 6.
    Valsala TP, Sonavane MS, Kore SG, Sonar NL, De V, Raghavendra Y, Chattopadyaya S, Dani U, Kulkarni Y, Changrani RD (2011) Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products. J Hazard Mater 196:22–28CrossRefGoogle Scholar
  7. 7.
    Rais J, Okada T, Alexova J (2006) Gibbs energies of transfer of alkali metal cations between mutually saturated water solvent systems determined from extraction experiments with radiotracer 137Cs. J Phys Chem B 110:8432–8440CrossRefGoogle Scholar
  8. 8.
    Sharma JN, Kumar A, Kumar V, Pahan S, Janardanan C, Tessi V, Wattal PK (2017) Process development for separation of cesium from acidic nuclear waste solution using 1,3-dioctyloxycalix[4]arene-crown-6 plus isodecyl alcohol/n-dodecane solvent. Sep Purif Technol 135:176–182CrossRefGoogle Scholar
  9. 9.
    He Q, Peters GM, Lynch VM, Sessler JL (2017) Recognition and extraction of cesium hydroxide and carbonate by using a neutral multitopic ion-pair receptor. Angew Chem Int Ed Engl 56:13396–13400CrossRefGoogle Scholar
  10. 10.
    Kwon S, Choi J, Cho S, Lee H, Oh W, Choi S-J (2016) A novel method for separating Cs+ from liquid radioactive waste using ionic liquids and a selective extractant. J Radioanal Nucl Chem 311:1605–1611CrossRefGoogle Scholar
  11. 11.
    Dartiguelongue A, Leybros A, Grandjean A (2017) Solubility and solution enthalpy of a cesium-selective calixarene in supercritical carbon dioxide. J Supercrit Fluids 125:42–49CrossRefGoogle Scholar
  12. 12.
    Chen K, Kang YS, Zhao Y, Yang JM, Lu Y, Sun WY (2014) Cucurbit[6]uril-based supramolecular assemblies: possible application in radioactive cesium cation capture. J Am Chem Soc 136:16744–16747CrossRefGoogle Scholar
  13. 13.
    Wang JL, Zhuang ST (2019) Removal of cesium ions from aqueous solutions using various separation technologies. Rev Environ Sci Biotechnol 18:231–269CrossRefGoogle Scholar
  14. 14.
    Sylvester P, Milner T, Jensen J (2013) Radioactive liquid waste treatment at Fukushima Daiichi. J Chem Technol Biotechnol 88:159–1596Google Scholar
  15. 15.
    Zakrzewska-Trznadel G, Harasimowicz M, Chmielewski AG (1999) Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation. J Membr Sci 163:257–264CrossRefGoogle Scholar
  16. 16.
    Zakrzewska-Trznadel G, Harasimowicz M, Chmielewski AG (2001) Membrane processes in nuclear technology-application for liquid radioactive waste treatment. Sep Purif Technol 22–23:617–625CrossRefGoogle Scholar
  17. 17.
    Wen X, Li FZ, Zhao X (2016) Removal of nuclides and boron from highly saline radioactive wastewater by direct contact membrane distillation. Desalination 394:101–107CrossRefGoogle Scholar
  18. 18.
    Kakehi J, Kamio E, Takagi R, Matsuyama H (2017) Effects of coexistent ions on 137Cs+ rejection of a polyamide reverse osmosis membrane in the decontamination of wastewater with low cesium-137 concentration. Ind Eng Chem Res 56:6864–6868CrossRefGoogle Scholar
  19. 19.
    Zakrzewska-Trznadel G (2013) Advances in membrane technologies for the treatment of liquid radioactive waste. Desalination 321:119–130CrossRefGoogle Scholar
  20. 20.
    Haas PA (1993) A review of information on ferrocyanide solids for removal of cesium from solutions. Sep Sci Technol 28:2479–2506CrossRefGoogle Scholar
  21. 21.
    Liu X, Chen GR, Lee DJ, Kawamoto T, Tanaka H, Chen ML, Luo YK (2014) Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresour Technol 160:142–149CrossRefGoogle Scholar
  22. 22.
    Tachikawa H, Haga K, Yamada K (2017) Mechanism of K+, Cs+ ion exchange in nickel ferrocyanide: a density functional theory study. Comput Theor Chem 1115:175–178CrossRefGoogle Scholar
  23. 23.
    Wang JL, Zhuang ST, Liu Y (2018) Metal hexacyanoferrates-based adsorbents for cesium removal. Coord Chem Rev 374:430–438CrossRefGoogle Scholar
  24. 24.
    Avramenko V, Bratskaya S, Zheleznov V, Sheveleva I, Voitenko O, Sergienko V (2011) Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metals ferrocyanides. J Hazard Mater 186:1343–1350CrossRefGoogle Scholar
  25. 25.
    Vincent C, Hertz A, Vincent T, Barré Y, Guibal E (2014) Immobilization of inorganic ion-exchanger into biopolymer foams—application to cesium sorption. Chem Eng J 236:202–211CrossRefGoogle Scholar
  26. 26.
    Valsala TP, Joseph A, Shah JG, Raj K, Venugopal V (2009) Synthesis and characterization of cobalt ferrocyanides loaded on organic anion exchanger. J Nucl Mater 384:146–152CrossRefGoogle Scholar
  27. 27.
    Ding DH, Lei ZF, Yang YN, Feng CP, Zhang ZY (2014) Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell. J Hazard Mater 270:187–195CrossRefGoogle Scholar
  28. 28.
    Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231CrossRefGoogle Scholar
  29. 29.
    Delchet C, Tokarev A, Dumail X, Toquer G, Barré Y, Guari Y, Guerin C, Larionova J, Grandjean A (2012) RSC Adv 2:5707–5716CrossRefGoogle Scholar
  30. 30.
    Yang HJ, Li HY, Zhai JL, Sun L, Zhao Y, Yu HW (2014) Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem Eng J 246:10–19CrossRefGoogle Scholar
  31. 31.
    Zakrzewska-Trznadel G (2003) Radioactive solutions treatment by hybrid complexation-UF/NF process. J Membr Sci 225(1–2):25–39CrossRefGoogle Scholar
  32. 32.
    Zhang CP, Gu P, Zhao J, Zhang D, Deng Y (2009) Research on the treatment of liquid waste containing cesium by an adsorption-microfiltration process with potassium zinc hexacyanoferrate. J Hazard Mater 167(1–3):1057–1062CrossRefGoogle Scholar
  33. 33.
    Han F, Zhang GH, Gu P (2012) Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration. J Hazard Mater 225–226:107–113CrossRefGoogle Scholar
  34. 34.
    Han F, Zhang GH, Gu P (2013) Adsorption kinetics and equilibrium modeling of cesium on copper ferrocyanide. J Radioanal Nucl Chem 295:369–377CrossRefGoogle Scholar
  35. 35.
    Shimizu Y, Okuno YI, Uryu K, Ohtsubo S, Watanabe A (1996) Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment. Water Res 30:2385–2392CrossRefGoogle Scholar
  36. 36.
    Field RW, Wu D, Howell JA, Gupta BB (1995) Critical flux concept for microfiltration fouling. J Membr Sci 100:259–272CrossRefGoogle Scholar
  37. 37.
    Howell JA (1995) Sub-critical flux operation of microfiltration. J Membr Sci 107:165–171CrossRefGoogle Scholar
  38. 38.
    Kurita T, Kimura K, Watanabe Y (2014) The influence of granular materials on the operation and membrane fouling characteristics of submerged MBRs. J Membr Sci 469:292–299CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Civil and Transportation EngineeringHebei University of TechnologyTianjinChina
  2. 2.School of Environmental Science and EngineeringTianjin UniversityTianjinChina

Personalised recommendations