Synergistic effects of electron shuttle AQS and Alcaligenes faecalis on photocatalytic removal of U(VI)

  • Mulan Chen
  • Miao He
  • Mingxue LiuEmail author
  • Faqin DongEmail author
  • Hongfu Wei
  • Xiaoqin Nie


Photocatalytic removal of U(VI) has attracted much attention due to its advantages such as no secondary pollution and less energy consumption. Synergistic removal of U(VI) by Alcaligenes faecalis and exogenous electron shuttle AQS (anthraguinone-2-sulfonate) under illumination condition was investigated. The results show that 0.16 g L−1 AQS can apparently accelerate the electron transfer and promote the growth of A. faecalis. The reduction rate of U(VI) enhances by 17.50%. The maximum removal efficiency of U(VI) reaches up to 80.7%. These results suggest that proper exogenous electron shuttles can accelerate photocatalytic removal of U(VI) cooperating with microorganisms.


Synergistic effect Electron shuttle Alcaligenes faecalis Photocatalytic removal Uranium 



The authors thank the National Key R&D Program of China (2016YFC0502204), National Basic Research Program of China (973 Program: 2014CB846003), National Nature Science Foundation of China (Grant Numbers: 41272371, 41502316), and Longshan Academic Talent Research Supporting Program of SWUST (18LZX507).


  1. 1.
    Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2005) Direct microbial reduction and subsequent preservation of uranium in natural near-surface sediment. Appl Environ Microb 74:1790–1797CrossRefGoogle Scholar
  2. 2.
    Liu M, Dong F, Yan X, Zeng W, Hou L, Pang X (2010) Biosorption of uranium by Saccharomyces cerevisiae and surface interactions under culture conditions. Bioresour Technol 101:8573–8580CrossRefGoogle Scholar
  3. 3.
    Liu M, Luo L, Dong F, Wei H, Nie X, Zhang W, Hu W, Ding C, Wang P (2019) Characteristics and mechanism of uranium photocatalytic removal enhanced by chelating hole scavenger citric acid in a TiO2 suspension system. J Radioanal Nucl CH 319:147–158CrossRefGoogle Scholar
  4. 4.
    Gao J, Gu P, Zhang G, Gao X, Hou L (2014) Research progress of adsorptive technology in processing wastewater with low concentration of uranium. Eng Sci 16:73–78Google Scholar
  5. 5.
    Meng J, Wang H, Chen R, Wang P, Wang K, Ye L, Huang C (2008) Study of comprehensive utilization and separation of U-Mo by ion exchange from lixivium of a uranmolybdatite ore. Uranium Min Metall 27:173–177Google Scholar
  6. 6.
    Xu D, Yang Z, Chen Y, Zhang S (1983) Treatment of uranium mill tailings effluents by barium chloride-lime precipitation. Uranium Min Metall 2:47–52Google Scholar
  7. 7.
    Kim YK, Lee S, Ryu J, Park H (2015) Solar conversion of seawater uranium(VI) using TiO2 electrodes. Appl Catal B Environ 163:584–590CrossRefGoogle Scholar
  8. 8.
    He H, Zong M, Dong F, Yang P, Ke C, Liu M, Nie X, Ren W, Bian L (2017) Simultaneous removal and recovery of uranium from aqueous solution using TiO2 photoelectrochemical reduction method. J Radioanal Nucl Chem 313:59–67CrossRefGoogle Scholar
  9. 9.
    Salomone VN, Meichtry JM, Litter MI (2015) Heterogeneous photocatalytic removal of U(VI) in the presence of formic acid: U(III) formation. Chem Eng J 270:28–35CrossRefGoogle Scholar
  10. 10.
    Wang P, Dong F, Liu M, He H, Huo T, Zhou L, Zhang W (2018) Improving photoelectrochemical reduction of Cr(VI) ions by building α-Fe2O3/TiO2 electrode. Environ Sci Pollut R 25:22455–22463CrossRefGoogle Scholar
  11. 11.
    Xiang S, Liu M, Zhang G, Luo L, Wei H, Dong F (2017) Screening of photoelectron-response microbes as well as their growth and metabolism. Biotechnol Bull 33:205–213Google Scholar
  12. 12.
    Ma J, Nie X, Dong F, Dai Q, Zhang D, Yang J, Zhou X, Huang R, Gong J, Gong Y (2015) The adsorption behavior on uranium by three kinds of microorganisms. China Environ Sci (Chin Ed) 35:825–832Google Scholar
  13. 13.
    Zhang W, Dong F, Yang J, Nie X, Wang Y, Huo T, Zhou L (2018) Biosorption of U(VI) on three kinds of inactivated microorganisms and its effect by γ-Ray irradiation. J Nucl Radiochem (Beijing, China) 40:258–266Google Scholar
  14. 14.
    Roden EE, Kappler A, Bauer I, Jiang J, Paul A, Stoesser R, Konishi H, Xu H (2010) Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat Geosci 3:417–421CrossRefGoogle Scholar
  15. 15.
    Li X, Liu T, Liu L, Li F (2014) Dependence of the electron transfer capacity on the kinetics of quinone-mediated Fe(III) reduction by two iron/humic reducing bacteria. RSC Adv 4:2284–2290CrossRefGoogle Scholar
  16. 16.
    Canstein HV, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by shewanella dpecies and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623CrossRefGoogle Scholar
  17. 17.
    Turick CE, Tisa LS, Caccavo F (2002) Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by shewanella algae bry. Appl Environ Microb 68:2436–2444CrossRefGoogle Scholar
  18. 18.
    Lovley DR, Coates JD, Blunt-Harris EL, Phillips PEJ, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature (London) 382:445–448CrossRefGoogle Scholar
  19. 19.
    Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microb 70:921–928CrossRefGoogle Scholar
  20. 20.
    Nevin KP, Lovley DR (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by geothrix fermentans. Appl Environ Microb 68:2294–2299CrossRefGoogle Scholar
  21. 21.
    Ngah WS, Fatinathan S, Yosop NA (2011) Isotherm and kinetic studies on the adsorption of humic acid onto chitosan-H2SO4 beads. Desalination 272:293–300CrossRefGoogle Scholar
  22. 22.
    Li X, Liu L, Liu T, Yuan T (2013) Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by klebsiella pneumoniae L17. Chemosphere 92:218–224CrossRefGoogle Scholar
  23. 23.
    Zhang F, Wu WM, Parker JC, Mehlhorn T, Kelly SD, Kemner KM, Zhang G, Schadt C, Brooks SC, Criddle CS, Watson DB, Jardine PM (2010) Kinetic analysis and modeling of oleate and ethanol stimulated uranium(VI) bio-reduction in contaminated sediments under sulfate reduction conditions. J Hazard Mater 183:482–489CrossRefGoogle Scholar
  24. 24.
    Liu C, Zachara JM, Zhong L, Heald SM, Wang Z, Jeon BH, Fredrickson JK (2009) Microbial of reduction intragrain U(VI) in contaminated sediment. Environ Sci Technol 43:4928–4933CrossRefGoogle Scholar
  25. 25.
    Gu B, Chen J (2003) Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions. Geochim Cosmochim Ac 69:3575–3582CrossRefGoogle Scholar
  26. 26.
    Suzuki Y, Tanaka K, Kozai N, Ohnuki T (2010) Effects of citrate, NTA, and EDTA on the reduction of U(VI) by Shewanella putrefaciens. Geomicrobiol J 27:245–250CrossRefGoogle Scholar
  27. 27.
    Liu J, Xie S, Wang Y, Liu Y (2015) U(VI) reduction by Shewanella oneidensis mediated by anthraquinone-2-sulfonate. T Nonferr Metal Soc 25:4144–4150CrossRefGoogle Scholar
  28. 28.
    Du L, Li Y, Ma X, Liu Y (2015) Determination of micro uranium by arsenazo III spectrophotometry. Metall Anal 35:68–71Google Scholar
  29. 29.
    Liu T, Wu Y, Huang H, Jiang F, Tang K, Wei Q (2012) XPS analysis and corrosion resistance of CrNx film prepared by unbalanced magnetron sputtering on surface of depleted uranium. At Energy Sci Technol 46:1128–1132Google Scholar
  30. 30.
    Zhou P, Wang X, Yang J, Fu X, Luo L (2008) Effect of vacuum heat treatment on oxidation of uranium surfaces. Rare Metal Mater Eng 37:94–97Google Scholar
  31. 31.
    Zhang G, Yang F (2007) Electrochemical behavior and electrocatalytic activity of glassy carbon electrode modified by anthraquinone/polypyrrole composite film. Chin J Catal 28:504–508Google Scholar
  32. 32.
    Zong M, He H, Dong F, He P, Sun S, Liu M, Nie X (2016) Electrochemical electron transfer and crystallization process of uranium(VI) in sodium salt solution. Chem J Chin U 37:1701–1709Google Scholar
  33. 33.
    Lu A, Li Y, Jin S, Wang X, Wu X, Zeng C, Ding H, Hao R, Lv M, Wang C, Tang Y, Dong H (2012) Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat Commun 3:768CrossRefGoogle Scholar
  34. 34.
    Liu Y, Fang HHP (2003) Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit Rev Environ Sci Technol 33:237–273CrossRefGoogle Scholar
  35. 35.
    Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64CrossRefGoogle Scholar
  36. 36.
    Yu P, Li Y, Lu A, Zeng C, Wang X, Ding H (2013) The denitrifying capability of soil microbe-Alcaligenes faecalis conducted by photoelectrons. Acta Pet Mineral 32:761–766Google Scholar
  37. 37.
    Wang X, Yu P, Lu A (2014) Growth and metabolism of Alcaligenes faecalis under different carbon sources and influence of carbon nitrogen ratio on its denitrification. Chemistry 77:370–374Google Scholar
  38. 38.
    Liu M, Zhang D, Kang H, Zhang W, Li Y, Pang X, Dong F (2011) The interaction between uranium and yeast cell surface. Geol J China Univ 17:53–58Google Scholar
  39. 39.
    Gu L, Huang B, Lai C, Xu Z, He H, Pan X (2018) The microbial transformation of 17β-estradiol in an anaerobic aqueous environment is mediated by changes in the biological properties of natural dissolved organic matter. Sci Total Environ 631–632:641–664CrossRefGoogle Scholar
  40. 40.
    Liu G, Zhu J, Yu H, Jin R, Wang J, Zhou J (2018) Review on electron-shuttle-mediated microbial reduction of iron oxides minerals. Earth Sci 43:157–170Google Scholar
  41. 41.
    Yang X, Yu G, Kong L, Wang L (2002) Kinetic study on photodegradation of acid red 3B catalyzed by heteropoly acid. J Environ Sci (Beijing, China) 23:40–43Google Scholar
  42. 42.
    Fan SH, Sun ZF, Wu QZ, Li YG (2003) Adsorption and photocatalytic kinetics of azo dyes. Acta Phys Chim Sin 19:25–29Google Scholar
  43. 43.
    Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C 9:171–192CrossRefGoogle Scholar
  44. 44.
    Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C 9:1–12CrossRefGoogle Scholar
  45. 45.
    Oliveira RC, Hammer P, Guibal E, Taulemesse JM (2014) Characterization of metal–biomass interactions in the lanthanum(III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: preliminary studies. Chem Eng J 239:381–391CrossRefGoogle Scholar
  46. 46.
    Marsili E, Rollefson JB, Baron DB, Hozalski R, Bond DR (2008) Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Appl Environ Microbiol 74:7329–7337CrossRefGoogle Scholar
  47. 47.
    Kim JG, Park YS, Ha YK, Song K (2012) Infrared spectra of uranium oxides measured by ATR-FTIR. J Nucl Sci Technol 46:1188–1192CrossRefGoogle Scholar
  48. 48.
    Bera S, Sali SK, Sampath S, Narasimhan SV, Venugopal V (1998) Oxidation state of uranium: an XPS study of alkali and alkaline earth uranates. J Nucl Mater 255:26–33CrossRefGoogle Scholar
  49. 49.
    Allen GC, Trickle IR, Tucker PM (1981) Surface characterization of uranium metal and uranium dioxide using X-ray photoelectron spectroscopy. Philos Mag B 43:689–703CrossRefGoogle Scholar
  50. 50.
    Riba O, Scott TB, Ragnarsdottir KV, Allen GC (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72:4047–4057CrossRefGoogle Scholar
  51. 51.
    Yang M, Yi T, Zheng F, Tang Y, Zhang L, Du K, Li N, Zhao L, Ke B, Xing P (2018) Surface oxidation of as-deposit uranium film characterized by X-ray photoelectron spectroscopy. Acta Phys Sin Ch Ed 67:027301Google Scholar
  52. 52.
    Liu M, Dong F, Zhang W, Nie X, Wei H, Sun S, Zhong X, Liu Y, Wang D (2017) Contribution of surface functional groups and interface interaction to biosorption of strontium ions by Saccharomyces cerevisiae under culture conditions. RSC Adv 7:50880–50888CrossRefGoogle Scholar
  53. 53.
    Lu A, Li Y, Ding H, Wang C (2018) Mineralogical photoelectrons and minerals and microorganisms synergistic interactions. Bull Mineral Pet Geochem 37:172–173Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Life Science and Engineering CollegeSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.Key Laboratory of Solid Waste Treatment and Resource RecycleMinistry of Education of ChinaMianyangPeople’s Republic of China
  3. 3.National Co-innovation Center for Nuclear Waste Disposal and Environmental SafetySouthwest University of Science and TechnologyMianyangPeople’s Republic of China

Personalised recommendations