Uranium sorption from productive solutions prepared by carbonate leaching from peat ore

  • S. Yu. Skripchenko
  • S. M. TitovaEmail author
  • A. L. Smirnov
  • V. N. Rychkov


The uranium sorption by anion exchange resins from productive solutions prepared by carbonate leaching from peat ore was investigated. The uranium recovery from leach liquors decreased during long-time exploitation of ion exchangers due to contamination of resins with humic substances. The alkaline solution of sodium chloride can be used to efficiently regenerate of resins. The resin Purolite A660/4759 had the highest value of full dynamic exchange capacity, which was (36.62 ± 1.10) g U/L of wet settled resin. The desorption process was carried out by ammonium carbonate/bicarbonate mixture solutions with values of uranium recovery degree of (97.41 ± 2.53)%. The degree of uranium precipitation during crystallization of ammonium uranyl carbonate from pregnant solutions was 72%.


Uranium recovery Peat ore Carbonate leaching Anion exchange Regeneration 



  1. 1.
    Bordelet G, Beaucaire C, Phrommavanh V, Descostes M (2018) Chemical reactivity of natural peat towards U and Ra. Chemosphere 202:651–660CrossRefGoogle Scholar
  2. 2.
    Mikutta C, Langner P, Bargar JR, Kretzschmar R (2016) Tetra- and hexavalent uranium forms bidentate-mononuclear complexes with particulate organic matter in a naturally uranium-enriched Peatland. Environ Sci Technol 50:10465–10475CrossRefGoogle Scholar
  3. 3.
    Cumberland SA, Douglas G, Grice K, Moreau JW (2016) Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes. Earth Sci Rev 159:160–185CrossRefGoogle Scholar
  4. 4.
    Uralbekov BM, Smodis B, Burkitbayev M (2011) Uranium in natural waters sampled within former uranium mining sites in Kazakhstan and Kyrgyzstan. J Radioanal Nucl Chem 289:805–810CrossRefGoogle Scholar
  5. 5.
    Arbuzov SI, Volostnov AV, Rikhvanov LP, Mezhibor AM, Ilenok SS (2011) Geochemistry of radioactive elements (U, Th) in coal and peat of northern Asia (Siberia, Russian Far East, Kazakhstan, and Mongolia). Int J Coal Geol 86:318–328CrossRefGoogle Scholar
  6. 6.
    González AZI, Krachler M, Cheburkin AK, Shotyk W (2006) Spatial distribution of natural enrichments of arsenic, selenium, and uranium in a Minerotrophic Peatland, Gola di Lago, Canton Ticino, Switzerland. Environ Sci Technol 40:6568–6574CrossRefGoogle Scholar
  7. 7.
    Read D, Bennett DG, Hooker PJ, Ivanovich M, Longworth G, Milodowski AE, Noy DJ (1993) The migration of uranium into peat-rich soils at Broubster, Caithness, Scotland, UK. J Contam Hydrol 13:291–308CrossRefGoogle Scholar
  8. 8.
    Zielinski RA, Meier AL (1988) The association of uranium with organic matter in Holocene peat: an experimental leaching study. Appl Geochem 3:631–643CrossRefGoogle Scholar
  9. 9.
    Owen DE, Otton JK (1995) Mountain wetlands: efficient uranium filters—potential impacts. Ecol Eng 5:77–93CrossRefGoogle Scholar
  10. 10.
    Bordelet G, Beaucaire C, Phrommavanh V, Descostes M (2013) Sorption properties of peat for U(VI) and 226Ra in U mining areas. Procedia Earth Planet Sci 7:85–88CrossRefGoogle Scholar
  11. 11.
    Matveyeva I, Jaćimović R, Planinšek P, Stegnar P, Smodiš B, Burkitbayev M (2014) Assessment of the main natural radionuclides, minor and trace elements in soils and sediments of the Shu valley (near the border of Kazakhstan and Kyrgyzstan). J Radioanal Nucl Chem 299:1399–1409CrossRefGoogle Scholar
  12. 12.
    Evteeva LI, Sovenya NV, Khokhlov SV (2017) Experimental tests of uranium leaching from uranium-containing peat of the Kamyshanovskoye deposit. In: Presented at VIII international scientific and practical conference “actual problems of the uranium industry”, AstanaGoogle Scholar
  13. 13.
    Edwards CR, Oliver AJ (2000) Uranium processing: a review of current methods and technology. JOM 52:12–20CrossRefGoogle Scholar
  14. 14.
    Seredkin M, Zabolotsky A, Jeffress G (2016) In situ recovery, an alternative to conventional methods of mining: exploration, resource estimation, environmental issues, project evaluation and economics. Ore Geol Rev 79:500–514CrossRefGoogle Scholar
  15. 15.
    Ilankoon IMSK, Tang Y, Ghorbani Y, Northey S, Yellishetty M, Deng X, McBride D (2018) The current state and future directions of percolation leaching in the Chinese mining industry: challenges and opportunities. Miner Eng 125:206–222CrossRefGoogle Scholar
  16. 16.
    Ding D-x, Song J-b, Ye Y-j, Li G-y, Fu H-y, Hu N, Wang Y-d (2013) A kinetic model for heap leaching of uranium ore considering variation of model parameters with depth of heap. J Radioanal Nucl Chem 298:1477–1482CrossRefGoogle Scholar
  17. 17.
    Razik AA, Ali FA, Attia FA (1989) Evaluation of the stability constants of uranyl association complexes with chloride, fluoride, bromide, and sulfate anions in solutions of constant ionic strength. Microchem J 39:258–264CrossRefGoogle Scholar
  18. 18.
    Vopálka D, Štamberg K, Motl A, Drtinová B (2010) The study of the speciation of uranyl–sulphate complexes by UV–Vis absorption spectra decomposition. J Radioanal Nucl Chem 286:681–686CrossRefGoogle Scholar
  19. 19.
    Morss LR, Edelstein NM, Fuger J (2010) The chemistry of the actinide and transactinide elements. Springer, DordrechtGoogle Scholar
  20. 20.
    Rosenberg E, Pinson G, Tsosie R, Tutu H, Cukrowska E (2016) Uranium remediation by ion exchange and sorption methods: a critical review. Johns Matthey Technol Rev 60:59–77CrossRefGoogle Scholar
  21. 21.
    Warwick P, Evans N, Hall A, Walker G, Steigleder E (2005) Stability constants of U(VI) and U(IV)-humic acid complexes. J Radioanal Nucl Chem 266:179–190CrossRefGoogle Scholar
  22. 22.
    Song Y, Wang Y, Wang L, Song C, Yang Z, Zhao A (1999) Recovery of uranium from carbonate solutions using strongly basic anion exchanger: 4. Column operation and quantitative analysis. React Funct Polym 39:245–252CrossRefGoogle Scholar
  23. 23.
    Nekrasova NA, Kudryavtseva SP, Milyutin VV, Chuveleva EA, Firsova LA, Gelis VM (2008) Sorption of uranium from carbonate solutions on various ion exchangers. Radiochemistry 50:180–182CrossRefGoogle Scholar
  24. 24.
    Ladeira ACQ, Morais CA (2005) Uranium recovery from industrial effluent by ion exchange—column experiments. Miner Eng 18:1337–1340CrossRefGoogle Scholar
  25. 25.
    Kolomiets DN, Troshkina ID, Sheremet’ev MF, Konopleva LV (2005) Sorption of uranium from sulfuric acid leaching solutions by strongly basic anion exchangers. Russ J Appl Chem 78:722–726CrossRefGoogle Scholar
  26. 26.
    Skripchenko SY, Titova SM, Zhevlakova TA, Smirnov AL (2018) Uranium sorption from ISL solutions with an increased content of chlorides. In: AIP conference proceedings 2015, pp 020098Google Scholar
  27. 27.
    Rychkov VN, Smirnov AL, Gortsunova KR (2014) Sorption of uranium from underground leaching solutions with highly basic anion exchangers. Radiochemistry 56:38–42CrossRefGoogle Scholar
  28. 28.
    Korovin V, Valiaiev O, Zontov O, Zontova L, Pilchyk V, Pysmennyi B (2019) Uranium (VI) sorption from sulphuric solutions by AM-p-2 anionite. In: E3S web of conferences 109, pp 00039Google Scholar
  29. 29.
    Sreenivas T, Rajan KC (2013) Studies on the separation of dissolved uranium from alkaline carbonate leach slurries by resin-in-pulp process. Sep Purif Technol 112:54–60CrossRefGoogle Scholar
  30. 30.
    Fettig J (1999) Removal of humic substances by adsorption/ion exchange. Water Sci Technol 40:173–182CrossRefGoogle Scholar
  31. 31.
    Shuang C, Wang J, Li H, Li A, Zhou Q (2015) Effect of the chemical structure of anion exchange resin on the adsorption of humic acid: behavior and mechanism. J Colloid Interface Sci 437:163–169CrossRefGoogle Scholar
  32. 32.
    Levchuk I, Rueda Márquez JJ, Sillanpää M (2018) Removal of natural organic matter (NOM) from water by ion exchange—a review. Chemosphere 192:90–104CrossRefGoogle Scholar
  33. 33.
    Bazri MM, Barbeau B, Mohseni M (2016) Evaluation of weak and strong basic anion exchange resins for NOM removal. J Environ Eng (United States) 142:04016044CrossRefGoogle Scholar
  34. 34.
    Audenaert WTM, Van Beneden L, Van Hulle SWH (2016) Removal of natural organic matter (NOM) by ion exchange from surface water for drinking water production: a pilot-scale study. Desalination Water Treat 57:13897–13908CrossRefGoogle Scholar
  35. 35.
    Grefte A, Dignum M, Cornelissen ER, Rietveld LC (2013) Natural organic matter removal by ion exchange at different positions in the drinking water treatment lane. Drink Water Eng Sci 6:1–10CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Rare Metals and Nanomaterials, Institute of Physics and TechnologyUral Federal UniversityEkaterinburgRussian Federation

Personalised recommendations