Advertisement

Single crystal HPGe (80%) versus BGO shielded CLOVER detector for high precision decay rate measurements: a comparative study

  • S. Pathak
  • P. DasEmail author
  • A. K. Sikdar
  • J. Nandi
  • S. Bhattacharyya
  • T. Bhattacharjee
  • Soumik Bhattacharya
  • S. S. Alam
  • A. Ray
Article
  • 11 Downloads

Abstract

In this study, various detector configurations have been investigated in order to explore the optimal condition for decay rate measurements of radioactive samples using gamma spectroscopy technique. A limitation of detecting low energy gamma rays from decaying radioactive nuclei, is the Compton background which can be significantly reduced by rejecting Compton scattered events through active Bismuth germanate (BGO) shielding. On the other hand, for a CLOVER detector without BGO shielding, one can place the radioactive samples very close to the detector for enhancing geometrical efficiency. A single crystal High Purity Germanium (HPGe) detector can also be used for decay rate measurements. In order to measure the decay rate of nuclei decaying via gamma emission with reasonable intensity, optimal close geometry options have been investigated for various HPGe detector configurations.

Keywords

CLOVER detector HPGe detector γ-Detection efficiency BGO shielding 

Notes

Acknowledgements

Amlan Ray acknowledges financial assistance from Science and Engineering Research Board, Government of India, Grant No. EMR/2016/001914. Mr S. Pathak and S. S. Alam thanks Department of Atomic Energy for financial support for carrying this experimental work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Emery GT (1972) Perturbation of nuclear decay rates. Annu Rev Nucl Sci 22:165–202CrossRefGoogle Scholar
  2. 2.
    Hahn HP, Born HJ, Kim J (1976) Survey on the rate perturbation of nuclear decay. Radiochim Acta 23:23–37CrossRefGoogle Scholar
  3. 3.
    Greenland PT (1988) Seeking non-exponential decay. Nature 335:298CrossRefGoogle Scholar
  4. 4.
    Hensley WK, Basset WA, Huizenga JR (1973) Pressure dependence of the radioactive decay constant of beryllium-7. Science 181:1164CrossRefPubMedGoogle Scholar
  5. 5.
    Ray A, Das P, Saha SK, Das SK, Sethi B, Mookerjee A, Basu Chaudhuri C, Pari G (1999) Observation of large change of 7Be decay rate in Au and Al2O3 and its implications. Phys Lett B 455:69CrossRefGoogle Scholar
  6. 6.
    Norman EB, Rech GA, Browne E, Larimer RM, Dragowsky MR, Chan YD, Isaac MCP, McDonald RJ, Smith AR (2001) Influence of physical and chemical environments on the decay rates of 7Be and 40K. Phys Lett B 519:15CrossRefGoogle Scholar
  7. 7.
    Ray A, Das P, Saha SK, Das SK (2002) The effect of host medium on the half-life of 7Be. Phys Lett B 531:187CrossRefGoogle Scholar
  8. 8.
    Ray A, Das P, Saha SK, Das SK, Mookerjee A (2002) Effect of host medium on the L/K ratio in 7Be electron capture. Phys Rev C 66:012501(R)CrossRefGoogle Scholar
  9. 9.
    Das P, Ray A (2005) Terrestrial 7Be decay rate and 8B solar neutrino flux. Phys Rev C 71:025801CrossRefGoogle Scholar
  10. 10.
    Clark S (2012) Half-life heresy: strange goings on at the heart of the atom. New Sci 216:42–45CrossRefGoogle Scholar
  11. 11.
    Hardy JC, Goodwin JR, Golovko VV, Iacob VE (2010) Tests of nuclear half-lives as a function of the host medium and temperature: refutation of recent claims. Appl Radiat Isot 68:1550–1554CrossRefPubMedGoogle Scholar
  12. 12.
    Pommé S (2016) Evidence against solar influence on nuclear decay constants. Phys Lett B 761:281–286CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Asgar MA, Mukherjee G, Roy T, Bhattacharya S, Bhattacharya C, Dhal A, Mahato D, Bhutani S (2016) Geant4 simulation of VECC array for nuclear spectroscopy (VENUS) and HPGe detector of NDPCI. In: Proceedings of the DAE-BRNS symposium on nuclear physics, vol 61, pp 950–951Google Scholar
  14. 14.
    Venkataramanan S, Gupta A, Kumar R, Singh R P, Muralithar S, Bhowmik R K (2006) Technical report on clover electronics module Reference No: IUAC/TR/SV/2002-03/30 (revised)Google Scholar
  15. 15.
    Linux Advanced MultiParameter System for VME based DAQ. http://www.tifr.res.in/~pell/lamps_files/vme.html. Accessed 8 Aug 2018
  16. 16.
    Chhavi Agarwal, Danu LS, Gathibandhe M, Goswami A, Biswas DC (2014) Coincidence summing corrections for a clover detector. Nucl Instrum Methods A763(240):247Google Scholar
  17. 17.
    Saha A (2013) Characterization of LaBr3(Ce) and clover HPGe detector, HBNI project reportGoogle Scholar
  18. 18.
    Bhattacharya Soumik, Dey B, Saha A, Choudhury A, Bhattacharyya S, Bhattacharjee T, Banerjee S R, Das Gupta S, Mondal D, Mukherjee G, Mukhopadhyay P, Mukhopadhyay S, Pandit D, Pal S, Roy T, Seikh I (2013) Clover detector setup at VECC. In: Proceedings of the DAE symposium on nuclear physics, vol 58, pp 906–907Google Scholar
  19. 19.
    Usman S, Patil A (2018) Radiation detector deadtime and pile up: a review of the status of science. Nucl Eng Technol 50:1006–1016CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Experimental Nuclear Physics DivisionVariable Energy Cyclotron CentreKolkataIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations