Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 367–375 | Cite as

Design of a calibration system for radioactive aerosol monitor

  • Guoxiu QinEmail author
  • Youning Xu
  • Xilin Chen
  • Yongyong Chen
  • Fan Li
  • Weizhe Li


A calibration system was designed to meet the calibration requirement of the radioactive aerosal monitors. The system consists of a radioactive aerosol generation unit, a dilution and mixing unit, a sampling and measuring unit, a purification unit and an automatic control unit. The commonly-used α and β radioactive solutions Am(NO3)3 and CsCl were selected to prepared different concentrations of monodisperse radioactive aerosol. After testing the calibration system, it was determined that the measurement uncertainty of the α and β efficiency calibration factors taken by the system for the radioactive aerosol monitor was 2.8% and 2.6%, respectively.


Radioactive aerosol Calibration Detection efficiency 



This work was supported by the Natural Science Foundation of Chinese Program (No. 41804114), Engineering Research Center of Nuclear Technology Application (Ministry of Education No. HJSJYB2014-8) and Shenyang Science and Technology Bureau (No. 18-013-0-17). The authors would like to express thanks to the China Institute of Atomic Energy for its support of this work.


  1. 1.
    Thakur P, Ballard S, Nelson R (2013) An overview of Fukushima radionuclides measured in the northern hemisphere. Sci Total Environ 460:577–613CrossRefGoogle Scholar
  2. 2.
    Neroda AS, Mishukov VF, Goryachev VA, Simonenkov DV, Goncharova AA (2014) Radioactive isotopes in atmospheric aerosols over Russia and the Sea of Japan following nuclear accident at Fukushima Nr. 1 Daiichi Nuclear Power Station in March 2011. Environ Sci Pollut Res 21:5669–5677CrossRefGoogle Scholar
  3. 3.
    Muramatsu H, Kawasumi K, Kondo T, Matsuo K, Itoh S (2015) Size-distribution of airborne radioactive particles from the Fukushima accident. J Radioanal Nucl Chem 303:1459–1463CrossRefGoogle Scholar
  4. 4.
    Bulkin SY, Vazinger VV, Fedoseev GA, Portman AI (2007) Measurement of radioactive aerosols in cells holding jackets with fuel assemblies. Atom Energy 103:830–832CrossRefGoogle Scholar
  5. 5.
    Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J Nucl Sci Technol 48:1129–1134CrossRefGoogle Scholar
  6. 6.
    Kugeler K, Epping Ch, Roes J (1989) Importance of radioactive aerosols in hypothetical high temperature reactor accidents. J Aerosol Sci 20:1421–1424CrossRefGoogle Scholar
  7. 7.
    Mulpuru SR, Pellow MD, Cox DS, Hunt CEL, Barrand RD (1992) Characteristics of radioactive aerosols generated from a hot nuclear fuel sample. J Aerosol Sci 23:827–830CrossRefGoogle Scholar
  8. 8.
    Tripathi SN, Harrison RG (2000) Atmospheric removal of radioactive aerosols. J Aerosol Sci 31:472–473CrossRefGoogle Scholar
  9. 9.
    Lujanienė G, Aninkevičius V, Lujanas V (2009) Artificial radionuclides in the atmosphere over Lithuania. J Environ Radioact 100:108–119CrossRefGoogle Scholar
  10. 10.
    Klett A, Reuter W, Demey L (1997) Dynamic calibration of an aerosol monitor with natural and artificial alpha-emitters. IEEE Trans Nucl Sci 44:804–805CrossRefGoogle Scholar
  11. 11.
    Klett A, Demey L, Erath W, Nemecek P (2002) Calibration of an alpha-beta moving filter particulates monitor. IEEE Trans Nucl Sci 49:1042–1044CrossRefGoogle Scholar
  12. 12.
    Vargasa A, Arnolda D, Ortegaa X, Paragesb C (2008) Influence of natural radioactive aerosols on artificial radioactivity detection in the Spanish surveillance networks. Appl Radiat Isot 66:1627–1631CrossRefGoogle Scholar
  13. 13.
    Strom L (1969) The generation of monodisperse aerosols by means of a disintegrated jet of liquid. Rev Sci Instrum 40:778–782CrossRefGoogle Scholar
  14. 14.
    Suzuki T, Swift DL, Wagner HN, Proctor DF (1982) A new apparatus for generating hygroscopic radioactive aerosols for inhalation studies. Eur J Nucl Med 7:474–479CrossRefGoogle Scholar
  15. 15.
    Higginbotham AP, Semonin O, Bruce S, Chan C, Maindi M, Donnelly TD, Maurer M, Bang W (2009) Generation of Mie size microdroplet aerosols with applications in laser-driven fusion exeriments. Rev Sci Instrum 80:0635031–0635035CrossRefGoogle Scholar
  16. 16.
    McMurry PH (2000) A review of atmospheric aerosol measurments. Atmos Environ 34:1959–1999CrossRefGoogle Scholar
  17. 17.
    Endo A, Sato K, Noguchi H, Tanaka S, Iida T, Furuichi S, Kanda Y, Oki Y (2003) Study of particle size distribution and formation mechanism of radioactive aerosols generated in high-energy neutron fields. J Radioanal Nucl Chem 256:231–237CrossRefGoogle Scholar
  18. 18.
    Lu ZY (2000) Introduction to aerosol science. Atomic Energy Press, BeijingGoogle Scholar
  19. 19.
    Dorrian MD, Bailey MR (1996) Particle size distributions of radioactive aerosols measured in workplace and the environment. J Aerosol Sci 60:119–133Google Scholar
  20. 20.
    Bem H, Bem EM, Krzeminska M, Ostrowska M (2002) Determination of radioactivity in air filters by alpha and gamma spectrometry. Nukleonika 47:87–91Google Scholar
  21. 21.
    Ogorodnikov BI, Budyka AK (2001) Monitoring radioactive aerosols in the object “Cover”. Atom Energy 6:1016–1020CrossRefGoogle Scholar
  22. 22.
    Joint Committee for Guides in Metrology (2008) Evaluation of measurement data—guide to the expression of uncertainty in measurement. JCGM 2008Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Shenyang Institute of EngineeringShenyangChina
  2. 2.China Institute of Atomic EnergyXinzhen, Fangshan, BeijingChina

Personalised recommendations