Advertisement

Vertical distribution and migration of plutonium in the Loess Plateau, North Shaanxi, China

  • Liguo CaoEmail author
  • Zhengchao ZhouEmail author
  • Ning Wang
  • Zhongtang Wang
Article
  • 16 Downloads

Abstract

The vertical distribution and migration behavior of 239+240Pu in a soil core in northern Loess Plateau in Shaanxi Province was investigated. The results showed that the 239+240Pu activity concentration was in the range of 0.02–0.75 mBq/g. The measured atom ratios of 240Pu/239Pu in the soil profile varied from 0.179 to 0.201 and were consistent with the typical global fallout. The inventory of 239+240Pu was 66 Bq/m2 in the sampling site and the proportion of Pu in the first 10 cm top layer accounted for around 75%. The apparent convection velocity and effective dispersion coefficient were 0.19 cm/year and 0.12 cm2/year by the convection dispersion equation model, respectively. Further investigation is still highly required to clarify the dominant factors that control Pu migration.

Keywords

Plutonium Soils Vertical distribution Migration behavior Loess Plateau 

Notes

Acknowledgements

This work was partially supported by National Key Research and Invention Program of the Thirteenth (No. 2017YFC0504702); National Natural Science Funds of China (No. 41571260, 41701321); The Fundamental Research Funds for the Central Universities (No. GK201803047, GK201903075, GK201703051). Authors thank Dr. Huang Zhaoya for their support to sample analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zhang W, Pan SM, Zhang KX, Cao LG, Zhao J (2015) Acta Geogr Sin 70(9):1477–1490Google Scholar
  2. 2.
    Zheng J, Tagami K, Watanabe Y, Uchida S, Aono T, Ishii N, Yoshida S, Kubota Y, Fuma S, Ihara S (2012) Sci Rep 2:304.  https://doi.org/10.1038/srep00304 CrossRefGoogle Scholar
  3. 3.
    UNSCEAR (2000) Vol 1, UN, New York, pp 158–291Google Scholar
  4. 4.
    Kaplan DI, Powell BA, Demirkanli DI, Fjeld RA, Molz FJ, Serkiz SM, Coates JT (2004) Environ Sci Technol 38:5053–5058CrossRefGoogle Scholar
  5. 5.
    Ketterer ME, Hafer KM, Jones VJ, Appeleby PG (2004) Sci Total Environ 322:221–229CrossRefGoogle Scholar
  6. 6.
    Komosa A (1999) J Radioanal Nucl Chem 240:19–24CrossRefGoogle Scholar
  7. 7.
    Xu YH, Qiao JX, Pan SM, Hou XL, Roos P, Cao LG (2015) Sci Total Environ 511:176–185CrossRefGoogle Scholar
  8. 8.
    Bu WT, Ni YY, Guo QJ, Zheng J, Uchida S (2015) Sci Rep 5:12262.  https://doi.org/10.1038/srep12262 CrossRefGoogle Scholar
  9. 9.
    Ni YY, Wang ZT, Guo QJ, Zheng J, Li SX, Lin JX, Tan ZY, Huang WN (2018) Chemosphere 212:1002–1009CrossRefGoogle Scholar
  10. 10.
    Kelley JM, Bond LA, Beasley TM (1999) Sci Total Environ 273(278):483–500CrossRefGoogle Scholar
  11. 11.
    Harley JH (1980) J Radiat Res 21:83–104CrossRefGoogle Scholar
  12. 12.
    Tims SG, Everett SE, Fifield LK, Hancock GJ, Bartley R (2010) Nucl Instrum Methods B 268:1150–1154CrossRefGoogle Scholar
  13. 13.
    Tims SG, Fifield LK, Hancock GJ, Lal RR, Hoo WT (2013) Nucl Instrum Methods B 294:636–641CrossRefGoogle Scholar
  14. 14.
    Zhang WC, Xing S, Hou SL (2019) Soil Till Res 191:162–170CrossRefGoogle Scholar
  15. 15.
    Bu WT, Zheng J, Guo QJ, Uchida S (2014) J Environ Radioact 136:18–174CrossRefGoogle Scholar
  16. 16.
    Dong W, Tims SG, Fifield LK, Guo Q (2010) J Environ Radioact 101:29–32CrossRefGoogle Scholar
  17. 17.
    Xu YH, Qiao JX, Hou XL, Pan SM (2013) Sci Rep 3:3506CrossRefGoogle Scholar
  18. 18.
    Zheng J, Yamada M, Wu F, Liao H (2009) J Environ Radioact 100:71–75CrossRefGoogle Scholar
  19. 19.
    Zhao GJ, Mu X, Wen ZM, Wang F, Gao P (2013) Land Degrad Dev 24:499–510Google Scholar
  20. 20.
    Cai Q (2001) J Geogr Sci 11:53–70CrossRefGoogle Scholar
  21. 21.
    Wang ZT, Yang GS, Zheng J, Cao LG, Yu HJ, Zhu YB, Tagami K, Uchida S (2015) Anal Chem 87:5511–5515CrossRefGoogle Scholar
  22. 22.
    Szerbin P, Koblinger-Bokori E, Koblinger L, Vegvari I, Ugron A (1999) Sci Total Environ 227:215–227CrossRefGoogle Scholar
  23. 23.
    Bossew P, Kirchner G (2004) J Environ Radioact 732:127–150CrossRefGoogle Scholar
  24. 24.
    Guillén J, Baeza A, Corbacho JA, Muñoz-Muñoz JG (2015) J Environ Radioact 144:96–102CrossRefGoogle Scholar
  25. 25.
    Hamilton TF, Millies-Lacroix JC, Hong GH (1996) Les Editions de Physique. Les Ulis, Paris, pp 29–58Google Scholar
  26. 26.
    Bunzl K, Kracke W, Schimmack W (1995) J Environ Radioact 28:17–34CrossRefGoogle Scholar
  27. 27.
    Qiao JX, Hansen V, Hou XL, Aldahan A, Possnert G (2012) Appl Radiat Isot 70:1698–1708CrossRefGoogle Scholar
  28. 28.
    Cao LG, Zhang KX, Xiao S (2018) Earth Environ 46(5):417–421. (in Chinese)Google Scholar
  29. 29.
    Bossew P, Gastberger M, Gohla H, Hofer P, Hubmer A (2004) J Environ Radioact 73:87–99CrossRefGoogle Scholar
  30. 30.
    Sharma HD, Oscarson DW (1989) In: Material research society symposium proceedings, vol 127. Scientific Basis for Nuclear Fuel Waste Management XIII, pp. 735–741Google Scholar
  31. 31.
    Matisoff G, Ketterer ME, Rosen K, Mietelski JW, Vitko LF, Persson H, Lokas E (2011) Appl Geochem 26:105–115CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Geography and TourismShaanxi Normal UniversityXi’anChina
  2. 2.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations