Advertisement

Study on effect of sodium based buffers on the isotopic measurement of boron using Na2BO2+ by thermal ionization mass spectrometry

  • K. Sasi Bhushan
  • Radhika M. RaoEmail author
  • Preeti G. Goswami
  • S. Kannan
Article
  • 10 Downloads

Abstract

Alkali metaborate ions are usually monitored for the isotopic measurement of boron by positive thermal ionization mass spectrometry. Large variations in the of 10B/11B isotopic ratios are observed with the change in the mole ratios of B/Na when sodium carbonate solutions are added when compared with solution of neutral salt of sodium (NaCl). To understand the reason for the variations observed in the isotopic ratio of 10B/11B with the change in the mole ratio of B/Na, various sodium containing buffers effective in the pH range 3–9 were employed in the present studies instead of the conventionally used sodium carbonate for formation of Na2BO2+ ions in the ion source. NIST SRM-951 having certified 10B/11B ratio 0.2473 ± 0.0002 was used for all isotopic measurements by TIMS. It could be concluded that irrespective of the pH, the foremost reason for variations in the isotopic ratio of 10B/11B is the amount of Na present as Na2O on the filament.

Keywords

Sodium buffers Na2BO2+ pH TIMS 10B/11B isotopic ratio 

Notes

References

  1. 1.
    Hemming NG, Hanson GN (1994) A procedure for the isotopic analysis of boron by negative thermal ionization mass spectrometry. Chem Geol 114:147CrossRefGoogle Scholar
  2. 2.
    Shen JJ, You CF (2003) A 10-fold improvement in the precision of boron isotopic analysis by negative thermal ionization mass spectrometry. Anal Chem 75:1972CrossRefGoogle Scholar
  3. 3.
    Foster GL, Ni Y, Haley B, Elliott T (2006) Accurate and precise measurement of sub-nanogram sized samples of foraminiferal hosted boron by total evaporation NTIMS. Chem Geol 230:161CrossRefGoogle Scholar
  4. 4.
    Aggarwal SK et al (2009) Fractionation correction methodology for precise and accurate isotopic analysis of boron by negative thermal ionization mass spectrometry based on BO2(−) ions and using the 18O/16O ratio from ReO4(−) for internal normalization. Anal Chem 81(17):7420–7427CrossRefGoogle Scholar
  5. 5.
    Joachim Volkeninget al (1991) Osmium isotope determinations by negative thermal ionization mass spectrometry. Int J Mass Spectrom Ion Process 105(2):147–159CrossRefGoogle Scholar
  6. 6.
    Alamelu D et al (2004) Investigations on atomic and oxide ion formation of plutonium and uranium in thermal ionization mass spectrometry (TIMS) for the determination of 238Pu. Int J Mass Spectrom 239:51–56CrossRefGoogle Scholar
  7. 7.
    Datta BP et al (1992) Thermal ionization mass spectrometry of Li2BO2 + ions; determination of isotopic abundance ratio of lithium. Int J Mass Spectrom Ion Processes 116:87–114CrossRefGoogle Scholar
  8. 8.
    Datta BP et al (1993) Molecular ion beam method of isotopic analysis: effect of error propagation, a case study with Li2BO2 +. Rapid Commun Mass Spectrom 7:581–586CrossRefGoogle Scholar
  9. 9.
    Sahoo SK (1995) Simultaneous measurement of lithium and boron isotopes as lithium tetraborate ion by thermal ionization mass spectrometry. Analyst 120:335–339CrossRefGoogle Scholar
  10. 10.
    Datta BP et al (2000) Error-systematics of determining elemental isotopic abundance ratios by the molecular ion beam method: a case study for the simultaneous isotopic analysis of lithium and boron as Li2BO2 +. Rapid Commun Mass Spectrom 14:696–705CrossRefGoogle Scholar
  11. 11.
    Datta BP et al (2000) Error-systematics of determining simultaneously the isotopic abundance ratios of natural lithium and natural boron as Li2BO2 +. Rapid Commun Mass Spectrom 14:706–718CrossRefGoogle Scholar
  12. 12.
    Sasi Bhushan K et al (2016) Simultaneous determination of non-natural isotopic composition of Li and B employing Li2BO2 + by thermal ionisation mass spectrometry. Int J Mass Spectrom 406:20–28CrossRefGoogle Scholar
  13. 13.
    Rao RM et al (2011) High precision isotope ratio measurements on boron by thermal ionization mass spectrometry using Rb2BO2 + ion. Anal Methods 3:322–327CrossRefGoogle Scholar
  14. 14.
    Rao RM et al (2009) A robust methodology for high precision isotopic analysis of boron by thermal ionization mass spectrometry using Na2BO2 + ion. Int J Mass Spectrom 285:120–125CrossRefGoogle Scholar
  15. 15.
    Catanzaro EJ et al (1970) Nat Bur Stand (US) Spec Publ 17:260–277Google Scholar
  16. 16.
    Rao RM et al (2014) Role of graphite in isotopic analysis of boron in metal boron alloys positive-thermal ionization mass spectrometry (P-TIMS). Int J Mass Spectrom 364:21–24CrossRefGoogle Scholar
  17. 17.
    Rao RM et al (2010) Determination of ultratrace boron concentration in uranium oxide by isotope dilution-thermal ionization mass spectrometry using a simplified separation procedure. Microchim Acta 169:227–231CrossRefGoogle Scholar
  18. 18.
    Mann JL, Robert Kelly W (2005) Measurement of sulfur isotope composition (δ34S) by multiple-collector thermal ionization mass spectrometry using a 33S–36S double spike. Rapid Commun Mass Spectrom 19:3429–3441CrossRefGoogle Scholar
  19. 19.
    Aggarwal SK, You C-F (2016) A review on the determination of isotope ratios of boron with mass spectrometry. Mass Spectrom Rev 9999:1–21Google Scholar
  20. 20.
    Mathew KJ, Hasozbek A (2016) Comparison of mass spectrometric methods (TE, MTE and conventional) for uranium isotope ratio measurements. J Radioanal Nucl Chem 307:1681–1687CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Fuel Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations