Advertisement

Process development of [64Cu]Cu-ATSM: efficient stabilization and sterilization for therapeutic applications

  • Hiroki Matsumoto
  • Chika Igarashi
  • Emi Kaneko
  • Hiroki Hashimoto
  • Hisashi Suzuki
  • Kazunori Kawamura
  • Ming-Rong Zhang
  • Tatsuya Higashi
  • Yukie YoshiiEmail author
Article
  • 14 Downloads

Abstract

Hypoxia plays an important role in tumor prognosis. [64Cu]Cu-ATSM, a hypoxia-targeted radioactive agent, reportedly shows antitumor effect in vivo. For clinical application, [64Cu]Cu-ATSM must be manufactured at high concentrations to allow the administration of a therapeutic dose with safe intravenous bolus injection. Fifteen radical scavengers were tested to stabilize [64Cu]Cu-ATSM against radiolysis, and sodium l-ascorbate was selected. The optimal sterilization membrane filter was evaluated from polyvinylidene fluoride (PVDF), polyether sulfone, and mixed cellulose esters; PVDF showed the most efficient radiochemical yield after filtration. The proposed procedures can be used for the practical manufacturing of [64Cu]Cu-ATSM for therapeutic use.

Keywords

[64Cu]Cu-ATSM Hypoxia Internal radiotherapy Process development Stabilization Sterilization 

Notes

Acknowledgements

This study was supported by Japan Agency for Medical Research and Development (AMED) programs of “Practical Research for Innovative Cancer Control (18ck0106373h0002)”. We would like to thank Editage (www.editage.jp) for English language editing.

Compliance with ethical standards

Conflict of interest

HM and EK are employees of Nihon Medi-Physics Co., Ltd. All the other authors declare that they have no conflict of interests.

References

  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109CrossRefGoogle Scholar
  2. 2.
    Hsieh CH, Shyu WC, Chiang CY, Kuo JW, Shen WC, Liu RS (2011) NADPH oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme. PLoS ONE 6:e23945CrossRefGoogle Scholar
  3. 3.
    Rong Y, Durden DL, Van Meir EG, Brat DJ (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65:529–539CrossRefGoogle Scholar
  4. 4.
    Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Borea PA (2006) Adenosine modulates vascular endothelial growth factor expression via hypoxia-inducible factor-1 in human glioblastoma cells. Biochem Pharmacol 72:19–31CrossRefGoogle Scholar
  5. 5.
    Lopez-Lazaro M (2006) Hypoxia-inducible factor 1 as a possible target for cancer chemoprevention. Cancer Epidemiol Biomark Prev 15:2332–2335CrossRefGoogle Scholar
  6. 6.
    Huang WJ, Chen WW, Zhang X (2016) Glioblastoma multiforme: effect of hypoxia and hypoxia inducible factors on therapeutic approaches. Oncol Lett 12:2283–2288CrossRefGoogle Scholar
  7. 7.
    Lewis J, Laforest R, Buettner T, Song S, Fujibayashi Y, Connett J, Welch M (2001) Copper-64-diacetyl-bis(N 4-methylthiosemicarbazone): an agent for radiotherapy. Proc Natl Acad Sci USA 98:1206–1211CrossRefGoogle Scholar
  8. 8.
    Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ (1999) Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med 40:177–183Google Scholar
  9. 9.
    Obata A, Kasamatsu S, Lewis JS, Furukawa T, Takamatsu S, Toyohara J, Asai T, Welch MJ, Adams SG, Saji H et al (2005) Basic characterization of 64Cu-ATSM as a radiotherapy agent. Nucl Med Biol 32:21–28CrossRefGoogle Scholar
  10. 10.
    Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A (1997) Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38:1155–1160Google Scholar
  11. 11.
    Obata A, Yoshimi E, Waki A, Lewis JS, Oyama N, Welch MJ, Saji H, Yonekura Y, Fujibayashi Y (2001) Retention mechanism of hypoxia selective nuclear imaging/radiotherapeutic agent cu-diacetyl-bis(N 4-methylthiosemicarbazone) (Cu-ATSM) in tumor cells. Ann Nucl Med 15:499–504CrossRefGoogle Scholar
  12. 12.
    Dearling JL, Lewis JS, Mullen GE, Welch MJ, Blower PJ (2002) Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure–activity relationships. J Biol Inorg Chem 7:249–259CrossRefGoogle Scholar
  13. 13.
    Oh M, Tanaka T, Kobayashi M, Furukawa T, Mori T, Kudo T, Fujieda S, Fujibayashi Y (2009) Radio-copper-labeled Cu-ATSM: an indicator of quiescent but clonogenic cells under mild hypoxia in a Lewis lung carcinoma model. Nucl Med Biol 36:419–426CrossRefGoogle Scholar
  14. 14.
    Tanaka T, Furukawa T, Fujieda S, Kasamatsu S, Yonekura Y, Fujibayashi Y (2006) Double-tracer autoradiography with Cu-ATSM/FDG and immunohistochemical interpretation in four different mouse implanted tumor models. Nucl Med Biol 33:743–750CrossRefGoogle Scholar
  15. 15.
    Yoshii Y, Yoneda M, Ikawa M, Furukawa T, Kiyono Y, Mori T, Yoshii H, Oyama N, Okazawa H, Saga T, Fujibayashi Y (2012) Radiolabeled Cu-ATSM as a novel indicator of overreduced intracellular state due to mitochondrial dysfunction: studies with mitochondrial DNA-less rho0 cells and cybrids carrying MELAS mitochondrial DNA mutation. Nucl Med Biol 39:177–185CrossRefGoogle Scholar
  16. 16.
    Holland JP, Giansiracusa JH, Bell SG, Wong LL, Dilworth JR (2009) In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals. Phys Med Biol 54:2103–2119CrossRefGoogle Scholar
  17. 17.
    Bowen SR, van der Kogel AJ, Nordsmark M, Bentzen SM, Jeraj R (2011) Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling. Nucl Med Biol 38:771–780CrossRefGoogle Scholar
  18. 18.
    McMillan DD, Maeda J, Bell JJ, Genet MD, Phoonswadi G, Mann KA, Kraft SL, Kitamura H, Fujimori A, Yoshii Y, Furukawa T, Kato TA (2015) Validation of 64Cu-ATSM damaging DNA via high-LET Auger electron emission. J Radiat Res 56:784–791CrossRefGoogle Scholar
  19. 19.
    Pouget JP, Santoro L, Raymond L, Chouin N, Bardiès M, Bascoul-Mollevi C, Huguet H, Azria D, Kotzki PO, Pèlegrin M, Vivès E, Pèlegrin A (2008) Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons. Radiat Res 170:192–200CrossRefGoogle Scholar
  20. 20.
    Yoshii Y, Matsumoto H, Yoshimoto M, Zhang MR, Oe Y, Kurihara H, Narita Y, Jin ZH, Tsuji AB, Yoshinaga K, Fujibayashi Y, Higashi T (2018) Multiple administrations of 64Cu-ATSM as a novel therapeutic option for glioblastoma: a translational study using mice with xenografts. Transl Oncol 11:24–30CrossRefGoogle Scholar
  21. 21.
    Lopci E, Grizzi F, Russo C, Toschi L, Grassi I, Cicoria G, Lodi F, Mattioli S, Fanti S (2017) Early and delayed evaluation of solid tumours with 64Cu-ATSM PET/CT: a pilot study on semiquantitative and computer-aided fractal geometry analysis. Nucl Med Commun 38:340–346CrossRefGoogle Scholar
  22. 22.
    Lewis JS, Laforest R, Dehdashti F, Grigsby PW, Welch MJ, Siegel BA (2008) An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J Nucl Med 49:1177–1182CrossRefGoogle Scholar
  23. 23.
    Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Fukumura T, Zhang MR (2016) Efficient preparation of high-quality 64Cu for routine use. Nucl Med Biol 43:685–691CrossRefGoogle Scholar
  24. 24.
    Japanese Pharmaceutical Excipients Dictionary (2016) Yakuji Nippo Limited, TokyoGoogle Scholar
  25. 25.
    DaTscan Ioflupane I 123 Injection prescribing information (2011) GE Healthcare, Arlington Heights, USAGoogle Scholar
  26. 26.
    Amyvid Florbetapir F 18 Injection prescribing information (2012) Ely Lilly, Indianapolis, USAGoogle Scholar
  27. 27.
    Vizamyl Flutemetamol F 18 Injection prescribing information (2013) GE Healthcare, Arlington Heights, USAGoogle Scholar
  28. 28.
    Dehdashti F, Grigsby PW, Lewis JS, Laforest R, Siegel BA, Welch MJ (2008) Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N 4-methylthiosemicarbazone). J Nucl Med 49:201–205CrossRefGoogle Scholar
  29. 29.
    U.S. department of Health and Human Services/National Toxicology Program; Report on Carcinogens, Fourteenth Edition. November 2016: Butylated Hydroxyanisole. CAS No. 25013-16-5Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Research CentreNihon Medi-Physics Co., Ltd.SodegauraJapan
  2. 2.National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
  3. 3.Faculty of ScienceToho UniversityFunabashiJapan

Personalised recommendations