Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 3, pp 1495–1503 | Cite as

Influence of surface treatment on microstructure of stainless steels studied by Mössbauer spectrometry

  • Marcel B. MiglieriniEmail author
  • Lukáš Pašteka
  • Martin Cesnek
  • Tomáš Kmječ
  • Marek Bujdoš
  • Jaroslav Kohout


Examination of surface microstructure of stainless steels is presented. Transmission Mössbauer spectrometry and Conversion Electron Mössbauer Spectrometry which provide information from the bulk and surface regions, respectively, were used. We concentrate on structural modifications that were caused by surface treatments including grinding, polishing, and electrolytic etching. Scanning Electron Microscopy with Energy Dispersive Spectrometry was adopted for visualization of surface differences. Formation of magnetic phases was revealed in the surface regions of X6CrNiTi1810 steel while no substantial effect of surface treatment was found in the ATABOR steel. Bulk regions in both steels are not affected by surface treatment.


Mössbauer spectrometry Microstructure Steels Hyperfine interactions Surface treatment 



This work was supported by the Vedecká Grantová Agentúra MŠVVaŠ SR a SAV (Grant Nos. VEGA 1/0182/16, VEGA 1/0164/17), Univerzita Komenského v Bratislave (Grant No. UK/222/2018), and by the European Regional Development Fund Project CZ.02.1.01/0.0/0.0/16_019/0000778.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Diaz I, Cano H, de la Fuente D, Chico B, Vega JM, Morcillo M (2013) Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity. Corros Sci 76:348–360CrossRefGoogle Scholar
  2. 2.
    Baja B, Varga K, Szabó NA, Németh Z, Kádár P, Oravetz D, Homonnay Z, Kuzmann E, Schunk J, Patek G (2009) Long-term trends in the corrosion state and surface properties of the stainless steel tubes of steam generators decontaminated chemically in VVER-type nuclear reactors. Corros Sci 51:2831–2839CrossRefGoogle Scholar
  3. 3.
    Dubiel SM, Zukrowski J (2017) Phase decomposition at 402 °C in an Fe–Cr alloy: Mössbauer spectroscopic study. Mater Charact 129:282–287CrossRefGoogle Scholar
  4. 4.
    Dubiel SM, Zukrowski J (2017) Distribution of Cr atoms in a strained and strain relaxed Fe89.15Cr10.75 alloy: a Mössbauer effect study. Philos Mag Lett 97:386–392CrossRefGoogle Scholar
  5. 5.
    Idczak R, Idczak K, Konieczny R (2018) Fe0.88Cr0.12 and Fe0.85Cr0.15 alloys exposed to air at 870 K by TMS, CEMS and XPS. Phys B Phys Condens Matter 528:27–36CrossRefGoogle Scholar
  6. 6.
    Schaaf P (2002) Laser nitriding of metals. Progress Mater Sci 47:1–161CrossRefGoogle Scholar
  7. 7.
    Chen Z, Zhou G, Chen Z (2012) Microstructure and hardness investigations of 17-4PH stainless steel by laser quenching. Mater Sci Eng A 534:530–541CrossRefGoogle Scholar
  8. 8.
    Degmová J, Dekan J, Šimeg Veterníková J, Slugeň V (2017) Mössbauer spectroscopy study of laboratory produced ODS steels. Acta Phys Pol A 131:1171–1173CrossRefGoogle Scholar
  9. 9.
    ElMassalami M, Palatnik-de-Sousa I, Areiza MCL, Rebello JMA, Elzubair A (2011) On the magnetic anisotropy of superduplex stainless steel. J Magn Magn Mater 323:2403–2407CrossRefGoogle Scholar
  10. 10.
    Camelo KJ, Oliveira Junior FC, da Silva MR, Vasconcelos IF (2017) Influence of precipitates on the magnetic properties of Fe–Cr–Mo alloys studied by X-ray diffraction, Mössbauer spectroscopy and vibrating sample magnetometry. J Mater Res 32:1316–1323CrossRefGoogle Scholar
  11. 11.
    Dubiel SM, Cieślak J, Reuther H (2013) Effect of He+ irradiation on Fe–Cr alloys: Mössbauer-effect study. J Nucl Mater 434:235–239CrossRefGoogle Scholar
  12. 12.
    Dubiel SM, Zurkowski J (2015) Change of Cr atoms distribution in Fe85Cr15 alloy caused by 250 keV He+ ion irradiation to different doses. J Alloys Compd 624:165–169CrossRefGoogle Scholar
  13. 13.
    Dubiel SM, Zukrowski J, Serruys Y (2018) Effect of 0.25 and 2.0 MeV He-ion irradiation on short-range ordering in model (EFDA) Fe–Cr alloys. Metall Mater Trans 49A:3729–3737CrossRefGoogle Scholar
  14. 14.
    García-Cortés I, Leguey T, Sánchez FJ, Maira A, Morono A, Munoz P, Scepanovic M, Marco JF (2019) Study of damage in binary Fe85Cr15 alloys irradiated by ions and the effect of an external magnetic field during irradiation. J Nucl Mater 517:138–147CrossRefGoogle Scholar
  15. 15.
    Kostadinova E, Velinov N, Avdijeva T, Mitov I, Rusanov V (2017) A study of the pressure vessel steel of the WWER-440 unit 1 of the Kozloduy nuclear power plant. Hyperfine Int 238, 94CrossRefGoogle Scholar
  16. 16.
    Slugeň V, Segers D, de Bakker PMA, De Grave E, Magula V, Van Hoecke T, Van Waeyenberge B (1999) Annealing behaviour of reactor pressure-vessel steels studied by positron-annihilation spectroscopy, Mössbauer spectroscopy and transmission electron microscopy. J Nucl Mater 274:273–286CrossRefGoogle Scholar
  17. 17.
    Huang SS, Kitao S, Kobayashi Y, Yoshiie T, Xu Q, Sato K, Seto M (2015) Study of neutron irradiation on F82H alloys by Mössbauer spectroscopy. J Nucl Mater 456:266–271CrossRefGoogle Scholar
  18. 18.
    Slugeň V, Bartošová I, Dekan J (2017) Characterization of ODS steels after gamma irradiation for application in ALLEGRO reactor. Acta Phys Pol A 131:1090–1092CrossRefGoogle Scholar
  19. 19.
    Haščík J, Lipka J, Kupča L, Slugeň V, Miglierini M, Gröne R, Tóth I, Vitázek K (1995) Mössbauer and electron-positron annihilation study of a reactor pressure vessel steel. Acta Phys Slovaca 45:37–43Google Scholar
  20. 20.
    Homonnay Z, Homonnay Z, Szilágyi PÁ, Kuzmann E, Varga K, Németh Z, Szabó A, Radó K, Schunk J, Tilky P, Patek G (2007) Corrosion study of heat exchanger tubes in pressurized water cooled nuclear reactors by conversion electron Mössbauer spectroscopy. J Radioanal Nucl Chem 273:85–90CrossRefGoogle Scholar
  21. 21.
    Nunes GCS, Sarvezuk PWC, Biondo V, Blanco MC, Nunes MVS, de Andrade AMH, Paesano A Jr (2015) Structural and magnetic characterization of martensitic maraging-350 steel. J Alloys Compd 646:321–325CrossRefGoogle Scholar
  22. 22.
    Žák T, Jirásková Y (2006) CONFIT: Mössbauer spectra fitting program. Surf Interface Anal 38:710–714CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information TechnologySlovak University of Technology in BratislavaBratislavaSlovakia
  2. 2.Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 8Czech Republic
  3. 3.Institute of Laboratory Research on Geomaterials, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
  4. 4.Department of Low Temperature Physics, Faculty of Mathematics and PhysicsCharles UniversityPrague 8Czech Republic

Personalised recommendations