Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 487–493 | Cite as

Analysis of deuterated water contents using FTIR bending motion

  • Kyueun Park
  • Youngjin Kim
  • Kyung Jin LeeEmail author
Article
  • 57 Downloads

Abstract

Novel method for detection of heavy water in mixture has been developed based on bending vibration instead of stretching vibration. In order to apply bending motion, equation derived from equilibrium kinetics is established to find amount of HDO at equilibrium to define internal standard of analytical tool (in the concentration range of 20–80%). Based on theoretical expectation about amount of HDO and FTIR bending spectra, one can measure the initial concentration of heavy water in certain concentration range. The analytical method presented here can provide additional experimental pathway to determine exact amount of heavy water with better accuracy.

Keywords

FTIR Deuterated water Heavy water Bending motion 

Notes

Acknowledgements

This work supported by National Research Foundation (NRF) Grant (NRF-2017M2A8A5018435, and 2017R1A4A1015360).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Voogt JN, Awada M, Murphy EJ, Hayes GM, Busch R, Hellerstein MK (2007) Measurement of very low rates of cell proliferation by heavy water labeling of DNA and gas chromatography/pyrolysis/isotope ratio-mass spectrometric analysis. Nat Protoc 2(12):3058–3062CrossRefGoogle Scholar
  2. 2.
    Lee L, Park H, Kim T-S, Ko K-H, Jeong D-Y (2012) A new sensor for detection of coolant leakage in nuclear power plants using off-axis integrated cavity output spectroscopy. Nucl Instrum Methods Phys Res Sect A 678:8–12CrossRefGoogle Scholar
  3. 3.
    Lee L, Park H, Kim T-S, Kim M, Jeong D-Y (2016) Development of a portable heavy-water leak sensor based on laser absorption spectroscopy. Ann Nucl Energy 87:350–355CrossRefGoogle Scholar
  4. 4.
    Fanara P, Turner S, Busch R, Killion S, Awada M, Turner H, Mahsut A, LaPrade KL, Stark JM, Hellerstein MK (2004) In vivo measurement of microtubule dynamics using stable isotope labeling with heavy water—Effect of taxanes. J Biol Chem 279(48):49940–49947CrossRefGoogle Scholar
  5. 5.
    Farthing DE, Buxbaum NP, Lucas PJ, Maglakelidze N, Oliver B, Wang J, Hu K, Castro E, Bare CV, Gress RE (2017) Comparing DNA enrichment of proliferating cells following administration of different stable isotopes of heavy water. Sci Rep 7:4043CrossRefGoogle Scholar
  6. 6.
    Luo Y, Li C, Zhu W, Zheng X, Huang Y, Lu Z (2019) A facile strategy for the construction of purely organic optical sensors capable of distinguishing D2O from H2O. Angew Chem Int Ed 58(19):6280–6284CrossRefGoogle Scholar
  7. 7.
    Dunning SG, Nuñez AJ, Moore MD, Steiner A, Lynch VM, Sessler JL, Holliday BJ, Humphrey SM (2017) A sensor for trace H2O detection in D2O. Chem 2(4):579–589CrossRefGoogle Scholar
  8. 8.
    Knief RA (1992) Nuclear engineering: theory and technology of commercial nuclear power. Hemisphere Publishing Corporation, Washington, DCGoogle Scholar
  9. 9.
    Chaplin RA (2009) Nuclear reactor theory, thermal power plant. Encyclopedia of Life Support Systems. United KingdomGoogle Scholar
  10. 10.
    Bhave RR, Jubin RT, Spencer BB, Nair S (2016) Tritium separation from high volume dilute aqueous streams-milestone Report for M3FT-15OR0302092.  https://doi.org/10.2172/1254093
  11. 11.
    Bertie JE, Ahmed MK, Eysel HH (1989) Infrared Intensities of Liquids. 5. Optical and dielectric constants, integrated intensities, and dipole moment derivatives of H2O and D2O at 22°C. J Phys Chem 93(6):2210–2218CrossRefGoogle Scholar
  12. 12.
    Lappi SE, Smith B, Franzen S (2004) Infrared specctra of H216O, H218O and D2O in the liquid phase by single-pass attenuated total internal reflection spectroscopy. Spectrochim Acta A 60(11):2611–2619CrossRefGoogle Scholar
  13. 13.
    Wang ZH, Pakoulev A, Pang Y, Dlott DD (2004) Vibrational substructure in the OH stretching transition of water and HOD. J Phys Chem A 108(42):9054–9063CrossRefGoogle Scholar
  14. 14.
    Heinze S, Vuillemin B, Giroux P (1999) Application of ATR-FTIR spectroscopy in quantitative analysis of deuterium in basic solutions. Analusis 27(6):549–551CrossRefGoogle Scholar
  15. 15.
    Bertie JE, Lan Z (1996) Infrared Intensities of Liquids XX: the Intensity of the OH Stretching Band of Liquid Water Revisited, and the Best Current Values of the Optical Constants of H2O(l) at 25°C between 15,000 and 1 cm-1. Appl Spectrosc 50(8):1047–1057CrossRefGoogle Scholar
  16. 16.
    Choi SY, Choo J, Chung H, Sohn W, Kim K (2003) Feasibility of Fourier Transform (FT) Infrared spectroscopy for monitoring heavy water concentration in pressurized heavy water reactor. Vib Spectrosc 31(2):251–256CrossRefGoogle Scholar
  17. 17.
    Shon W, Yim SP, Lee L, Park H, Kim KR, Chung H, Lee CK (2016) Advances in deuterium dioxide concentration measurement. Fusion Eng Des 109:398–406CrossRefGoogle Scholar
  18. 18.
    Kim JG, Park YS, Ha YK, Song K (2011) Analysis of the HDO content in heavy water by ATR-FTIR. J Radioanal Nucl Ch 287(3):723–728CrossRefGoogle Scholar
  19. 19.
    Wu ZS, Ouyang GQ, Shi XY, Ma Q, Wan G, Qiao YJ (2014) Absorption and quantitative characteristics of C-H bond and O-H bond of NIR. Opt Spectrosc+ 117(5):703–709CrossRefGoogle Scholar
  20. 20.
    Coates J (2000) Interpretation of infrared spectra, a practical approach. Encycl Anal Chem Appl Theory Instrum 10815–10837Google Scholar
  21. 21.
    Herzberg G (1988) Molecular-spectra and molecular-structure. 2. Infrared and Raman-spectra of polyatomic-molecules. Cc/Eng Tech Appl Sci 13:16Google Scholar
  22. 22.
    Hornig DF, White HF, Reding FP (1958) The infrared spectra of crystalline H2O, D2O and HDO. Spectrochim Acta 12(4):338–349CrossRefGoogle Scholar
  23. 23.
    Ayers GP, Pullin ADE (1974) Reassignment of the vibrational spectra of matrix isolated H2O and HDO. Chem Phys Lett 29(4):609–615CrossRefGoogle Scholar
  24. 24.
    Duplan JC, Mahi L, Brunet JL (2005) NMR determination of the equilibrium constant for the liquid H2O-D2O mixture. Chem Phys Lett 413(4–6):400–403CrossRefGoogle Scholar
  25. 25.
    Jancso G, Van Hook WA (1974) Condensed phase isotope effects. Chem Rev 74(6):689–750CrossRefGoogle Scholar
  26. 26.
    Simonson JM (1990) The enthalpy of the isotope-exchange reaction: H2O + D2O = 2HDO at temperatures to 673 K and at pressures to 40 MPa. J Chem Thermo 22(8):739–749CrossRefGoogle Scholar
  27. 27.
    Bayly JG, Kartha VB, Stevens WH (1963) The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 μm–10 μm. Infrared Phys 3:211–222CrossRefGoogle Scholar
  28. 28.
    ASTM (2007) Standard practice for internal reflection spectroscopy. ASTM E 573-01Google Scholar
  29. 29.
    Kim J-G, Park Y-S, Ha Y-K, Song K (2009) Infrared spectra of uranium oxides measured by ATR-FTIR. J Nucl Sci Technol 46:1188–1192CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Applied ChemistryChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations