Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 1185–1194 | Cite as

Feasibility study of fissile mass detection in 870 L radioactive waste drums using delayed gamma rays from neutron-induced fission

  • R. De Stefano
  • C. CarascoEmail author
  • B. Pérot
  • E. Simon
  • T. Nicol
  • E. Mauerhofer


The measurement of delayed gamma rays following neutron-induced fission is simulated with MCNP 6.1 to investigate the feasibility of fissile material detection in long-lived, medium activity radioactive waste in 870 L drums. The signal from homogeneously distributed fissile material in the drum is several hundred counts in the main delayed gamma peaks of interest. In a peripheral position or in the drum center, the signal is however too small to allow for a reliable measurement.


Delayed gamma Neutron induced fission Long-lived medium activity waste 870 L radioactive waste drum MCNP 



  1. 1.
    Inventaire national des matières et déchets radioactifs – Catalogue descriptif des familles Andra (2015). Accessed 9 Apr 2019
  2. 2.
    Simon E et al (2016) Feasibility study of fissile mass quantification by photofission delayed gamma rays in radioactive waste packages using MCNPX. Nucl Instrum Methods A 840:28–35CrossRefGoogle Scholar
  3. 3.
    Carrel F et al (2011) New experimental results on the cumulative yields from thermal fission of 235U and 239Pu and from photofission of 235U and 238U induced by Bremsstrahlung. IEEE Trans Nucl Sci 58:2064–2072CrossRefGoogle Scholar
  4. 4.
    NUCLEIDE-LARA on the web (2018).
  5. 5.
    Durkee JW (2012) MCNP6 delayed-particle verification and validation Rev 5, LA-UR-12-00676Google Scholar
  6. 6.
    De Stefano R et al (2019) Simulation of U/Pu induced fission delayed gamma rays with MCNP 6. To be published in Nuclear instrumentation and measurement methods in nuclear environments conference records (ANIMMA), June 2019Google Scholar
  7. 7.
    Nicol T et al (2016) Feasibility study of 235U and 239Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays. Nucl Instrum Methods Phys A 832:85–94CrossRefGoogle Scholar
  8. 8.
    Carasco C (2010) MCNP output data analysis with ROOT (MODAR). Comput Phys Commun 181:2210–2211CrossRefGoogle Scholar
  9. 9.
    Nicol T et al (2016) HPGe-detector shielding optimization with MCNP for the MEDINA neutron activation cell. J Radioannal Nucl Chem 310:865–874CrossRefGoogle Scholar
  10. 10.
    Nicol T et al (2016) Quantitative comparison between PGNAA measurements and MCNPX simulations. J Radioannal Nucl Chem 308:671–677CrossRefGoogle Scholar
  11. 11.
    Gilmore G (2008) Practical gamma-ray spectroscopy, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  12. 12.
    Carrel F et al (2010) Identification and differentiation of actinides inside nuclear waste packages by measurement of delayed gammas. IEEE Trans Nucl Sci 57:2862–2871CrossRefGoogle Scholar
  13. 13.
    Simon E et al (2016) Fissile mass quantification in radioactive waste packages using photofission delayed gamma rays. In: IEEE Nucl. Sci. Symp., Med. Imag. Conf. and Room-Temp. Semicond. Det. Workshop (NSS/MIC/RTSD), pp 1–4Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Nuclear Measurement LaboratoryCEA, DEN, Cadarache, DTN, SMTASaint-Paul-lez-DuranceFrance
  2. 2.CEA, DEN, Cadarache, DER, SPRCSaint-Paul-lez-DuranceFrance
  3. 3.Jülich Centre for Neutron ScienceForschungszentrum JülichJülichGermany

Personalised recommendations