Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 271–280 | Cite as

Impact of the meteorological parameters on the behaviour of 7Be at ground level in Tetouan city, Morocco from June 2015 to February 2017

  • Allal HoualiEmail author
  • Mustafa Azahra
  • Tarek El Bardouni
  • Maria Angeles Ferro García
  • Francisco Piňero García
  • Essaid Chham


For the first time, atmospheric aerosols were collected in Tetouan city (Morocco), from June 2015 to February 2017, through which 7Be activity was measured. We studied data variation by time series analyses and the impact of local meteorological factors on it. 7Be concentrations, in mBq/m3, ranged from 1.65 to 7.79 with mean value of 4.69. 7Be behaviour is mainly influenced by air temperature, precipitations, relative humidity and atmospheric pressure. A prediction model was suggested and validated. This study helps understanding climatic variables impact on the environmental processes as aerosols transport and deposit, and to predict 7Be behaviour in Mediterranean regions like Tetouan.


Meteorological factors Be-7 Atmospheric aerosols Vertical convection Be-7 specific activity 



We warmly thank the staff of the meteorological factors registration station at Tetouan Airport who gave us all the information we needed in this study and the Royal Observatory of Belgium (SIDC, Brussels) for giving us the number of sunspots we requested. To encourage this first research of its kind in our neighboring country of Europe and the future project to install a radiological monitoring station in Tetouan then generalize it through Morocco. This study had received a specific grant from Abdelmalek Essaadi University.


  1. 1.
    Kathren RL (1984) Radioactivity in the environment sources, distribution and surveillance. Gordon and Breach Science Publishers Inc., New York. ISBN 3-7186-0203-2Google Scholar
  2. 2.
    Lal D, Peters B (1967) Cosmic ray produced radioactivity on the earth. In: K. Sitte (ed) Handbuch der Physik / Encyclopedia of Physics book series. Kosmische Strahlung II / Cosmic Rays II, vol XLVI/2. Springer, New York, pp 551–612. CrossRefGoogle Scholar
  3. 3.
    Johnson WB, Viezee W (1981) stratospheric ozone in the lower troposphere. I. Presentation and interpretation of aircraft measurements. Atmos Environ 15:1309–1323. CrossRefGoogle Scholar
  4. 4.
    Bezuglov MV, Malyshevsky VS, Fomin GV, Torgovkin AV, Shramenko VI, Malykhina TV (2012) Photonuclear production of cosmogenic beryllium-7 in the terrestrial atmosphere. Phys Rev C 86(024609):1–5. CrossRefGoogle Scholar
  5. 5.
    Ioannidou A, Manolopoulou M, Papastefanou C (2005) Temporal changes of 7Be and 210Pb radionuclides in air at temperate latitudes (40°). Appl Radiat Isot 63:277–284. CrossRefPubMedGoogle Scholar
  6. 6.
    Hötzl H, Rosner G, Winkler R (1991) Correlation of 7Be concentrations in surface air and precipitation with the solar cycle. Naturwissenschaften 78:215–217. CrossRefGoogle Scholar
  7. 7.
    Azahra M, Camacho García A, González Gómez C, López Peñalver J, El Bardounid T (2003) Seasonal 7Be concentrations in near surface air of Granada (Spain) in the period 1993–2001. Appl Radiat Isot 59:159–164. CrossRefPubMedGoogle Scholar
  8. 8.
    Leppänen AP, Usoskin IG, Kovaltsov GA, Paatero J (2012) Cosmogenic 7Be and 22Na in Finland Production, observed periodicities and the connection to climatic phenomena. J Atmos Sol Terr Phys 74:164–180. CrossRefGoogle Scholar
  9. 9.
    Papastefanou C, Ioannidou A (1995) Aerodynamic size association of 7Be in ambient aerosols. J Environ Radioact 26:273–282. CrossRefGoogle Scholar
  10. 10.
    Piñero García F, Ferro García MA, Azahra M (2012) 7Be behaviour in the atmosphere of the city of Granada January 2005 to December 2009. Atmos Environ 47:84–91. CrossRefGoogle Scholar
  11. 11.
    Kulan A, Aldahan A, Possnert A, Vintersved I (2006) Distribution of 7Be in surface air of Europe. Atmos Environ 40:3855–3868. CrossRefGoogle Scholar
  12. 12.
    Kuroda PK, Hodges HL, Fry LM (1962) Stratospheric residence time of strontium-90. Science 137:15–17CrossRefGoogle Scholar
  13. 13.
    Baeza A, Delrio LM, Jiménez A, Miró C, Paniagua JM, Rufo M (1996) Analysis of the temporal evolution of atmospheric 7Be as a vector of the behaviour of other radionuclides in the atmosphere. J Radioanal Nucl Chem 207(2):331–344. CrossRefGoogle Scholar
  14. 14.
    Feely HW, Larsen RJ, Sanderson CG (1989) Factors that cause seasonal variations in Beryllium-7 concentrations in surface air. J Environ Radioact 9:223–249. CrossRefGoogle Scholar
  15. 15.
    Leppänen AP, Pacini AA, Usoskin IG, Aldahan A, Echer E, Evangelista H, Klemola S, Kovaltsov GA, Mursula K, Possnert G (2010) Cosmogenic 7Be in air: a complexmixture of production and transport. J Atmos Sol Terr Phys 72:1036–1043. CrossRefGoogle Scholar
  16. 16.
    Tetouan airport whether station archives.étéo_à_Tétouan_ (aéroport). Accessed 10 Jan 2018
  17. 17.
    SILSO (2015) World Data Center—Sunspot number and long-term solar, observations, Royal Observatory of Belgium. On-line sunspot number catalogue. Accessed 19 July 2017
  18. 18.
    Bas MC, Ortiz J, Ballesteros L, Martorell S (2016) Analysis of the influence of solar activity and atmospheric factors on 7Be air concentration by seasonal-trend decomposition. Atmos Environ 145:147–157. CrossRefGoogle Scholar
  19. 19.
    Cannizzaro F, Greco G, Raneli M, Spitale MC, Tomarchio E (2004) Concentration measurements of 7Be at ground level air at Palermo, Italy. Comparison with solar activity over a period of 21 years. J Environ Radioact 72:259–271. CrossRefPubMedGoogle Scholar
  20. 20.
    Gonzalez A, Marugán I, Rey Del Castillo C, Ramos L, Sterling A (2004) Environmental radiological monitoring programs: results 2002. Technical Reports Collection 12 Spanish Nuclear Safety Council, MadridGoogle Scholar
  21. 21.
    Gonzalez A, Marugán I, Rey Del Castillo C, Ramos L, Sterling A (2005) Environmental radiological monitoring programs: results 2003. Technical Reports Collection 14 Spanish Nuclear Safety Council, MadridGoogle Scholar
  22. 22.
    Lozano RL, San Miguel EG, Bolivar JP, Baskaran M (2011) Depositional fluxes and concentrations of 7Be and 210Pb in bulk precipitation and aerosols at the interface of Atlantic and Mediterranean coast in Spain. J Geophys Res 116:18213. CrossRefGoogle Scholar
  23. 23.
    Aldahan A, Hedfors J, Possnert G, Kulan A, Berggren A (2008) Söderström C (1996) Atmospheric impact on beryllium isotopes as solar activity proxy. Geophys Res Lett. CrossRefGoogle Scholar
  24. 24.
    Kikuchi S, Sakurai H, Gunji S, Tokanai F (2009) Temporal variation of 7Be concentrations in atmosphere for 8 y from 2000 at Yamagata, Japan: solar influence on the 7Be time series. J Environ Radioact 100:515–521. CrossRefPubMedGoogle Scholar
  25. 25.
    Alegría N, Herranz M, Idoeta R, Legarda F (2010) Study of 7Be activity concentration in the air of northern Spain. J Radioanal Nucl Chem 286:347–351. CrossRefGoogle Scholar
  26. 26.
    Al-Azmi D, Sayed AM, Yatim HA (2001) Variations in 7Be concentrations in the atmosphere of Kuwait during period 1994 to 1998. Appl Radiat Isot 55:413–417. CrossRefPubMedGoogle Scholar
  27. 27.
    Baskaran M (1995) A search of seasonal variability on the depositional fluxes of 7Be and 210Pb. J Geophys Res 100:2833–2840. CrossRefGoogle Scholar
  28. 28.
    Baskaran M, Coleman CH, Santshi PH (1993) Atmospheric depositional fluxes of 7Be and 210Pb at Galveston and College Station, Texas. J Geophys Res 98:555–571. CrossRefGoogle Scholar
  29. 29.
    Hernandez F, Rodriguez S, Karlsson L, Alonso-Perez S, Lopez-Perez M, Hernandez-Armas J, Cuevas E (2008) Origin of observed high 7Be and mineral dust concentrations in ambient air on the Island of Tenerife. Atmos Environ 42:4247–4256. CrossRefGoogle Scholar
  30. 30.
    Dueñas C, Fernandez MC, Cañete S, Pérez M (2009) 7Be to 210Pb concentration ratio in ground level air in Malaga (36.7°N, 4.5°W). Atmos Res 92:49–57. CrossRefGoogle Scholar
  31. 31.
    Kim G, Hussain N, Scuddark JR, Church TM (2000) Factors influencing the atmospheric depositional fluxes of stable Pb, Pb-210 and Be-7 into Chesapeake Bay. J Atmos Chem 36:65–79. CrossRefGoogle Scholar
  32. 32.
    Caillet S, Arpagaus P, Monna F, Dominik J (2001) Factors controlling 7Be and 210Pb atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland. J Environ Radioact 53:241–256. CrossRefPubMedGoogle Scholar
  33. 33.
    Lee SH, Pham MK, Povinec PP (2002) Radionuclide variations in the air over Monaco. J Radioanal Nucl Chem 254(3):445–453. CrossRefGoogle Scholar
  34. 34.
    Yu KN, Lee LYL (2002) Measurements of atmospheric 7Be properties using high-efficiency gamma spectroscopy. Appl Radiat Isot 57:941–946. CrossRefPubMedGoogle Scholar
  35. 35.
    Bithell M, Vaughan G, Gray LJ (2000) Persistence of stratospheric ozone layers in the troposphere. Atmos Environ 34:2563–2570. CrossRefGoogle Scholar
  36. 36.
    Bonasoni P, Evangelisti F, Bonafe U, Ravegnani F, Calzolari F, Stohl A, Tositti L, Tubertini O, Colombo T (2000) stratospheric ozone intrusion episodes recorded at Mt. Cimone during the VOTALP project: case studies. Atmos Environ 34:1355–1365. CrossRefGoogle Scholar
  37. 37.
    Rankama K (1963) Nuclear reaction in nature. Progress isotope geology. Interscience Publishers, New Jersey, pp 91–176Google Scholar
  38. 38.
    Dueñas C, Fernandez MC, Liger E, Carretero J (1999) Gross alpha, gross beta activities and 7Be concentrations in surface air: analysis of their variations and prediction model. Atmos Environ 33:3705–3715. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Radiations and Nuclear Systems Laboratory, Faculty of Sciences of TetouanUniversity Abdelmalek EssaadiTétouanMorocco
  2. 2.Laboratory of Radiology and Radiochemistry, Faculty of SciencesUniversity of GranadaGranadaSpain

Personalised recommendations