Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 707–716 | Cite as

Gamma ray attenuation of hafnium dioxide- and tungsten trioxide-epoxy resin composites

  • Maria C. Molina Higgins
  • Nicholus A. Radcliffe
  • Miguel Toro-González
  • Jessika V. RojasEmail author
Article
  • 75 Downloads

Abstract

Composites containing WO3 or HfO2 nanoparticles were prepared and investigated as alternative shielding materials. Their performance was assessed using radioactive sources emitting photons with energies between 122 and 1407 keV. At 122 keV, the mass attenuation coefficient of the nanocomposites was five times greater to that of the epoxy matrix, and it gradually decreased with increasing energy. An enhancement in the mass attenuation coefficient of the polymer between 15% and 50% was observed at E > 1 MeV when adding the nanoparticles. These results support the development of lightweight garments for radiological application made of nanomaterials and polymeric matrices.

Keywords

Hafnium dioxide Tungsten trioxide Epoxy Composites Radiation shielding Gamma rays 

Notes

Acknowledgements

This work was financed by Virginia Commonwealth University (VCU) with the support of the Mechanical and Nuclear Engineering Department and the NRC-HQ-84-14-FOA-002 faculty development program in radiation detection and health physics.

References

  1. 1.
    Cacuci DG (2010) Handbook of nuclear engineering, vol 1. SpringerGoogle Scholar
  2. 2.
    Rezaei-Ochbelagh D, Azimkhani S (2012) Investigation of gamma-ray shielding properties of concrete containing different percentages of lead. Appl Radiat Isot 70(10):2282–2286.  https://doi.org/10.1016/j.apradiso.2012.06.020 CrossRefPubMedGoogle Scholar
  3. 3.
    Erdem M, Baykara O, Doğru M, Kuluöztürk F (2010) A novel shielding material prepared from solid waste containing lead for gamma ray. Radiat Phys Chem 79(9):917–922.  https://doi.org/10.1016/j.radphyschem.2010.04.009 CrossRefGoogle Scholar
  4. 4.
    Harish V, Nagaiah N, Prabhu TN, Varughese KT (2009) Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications. J Appl Polym Sci 112(3):1503–1508.  https://doi.org/10.1002/app.29633 CrossRefGoogle Scholar
  5. 5.
    Huang W, Yang W, Ma Q, Wu J, Fan J, Zhang K (2016) Preparation and characterization of γ-ray radiation shielding PbWO4/EPDM composite. J Radioanal Nucl Chem 309(3):1097–1103.  https://doi.org/10.1007/s10967-016-4713-9 CrossRefGoogle Scholar
  6. 6.
    McCaffrey JP, Shen H, Downton B, Mainegra-Hing E (2007) Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med Phys 34(2):530–537.  https://doi.org/10.1118/1.2426404 CrossRefPubMedGoogle Scholar
  7. 7.
    Şakar E, Büyükyıldız M, Alım B, Şakar BC, Kurudirek M (2019) Leaded brass alloys for gamma-ray shielding applications. Radiat Phys Chem 159:64–69.  https://doi.org/10.1016/j.radphyschem.2019.02.042 CrossRefGoogle Scholar
  8. 8.
    Akkurt I, Akyildirim H, Mavi B, Kilincarslan S, Basyigit C (2010) Gamma-ray shielding properties of concrete including barite at different energies. Prog Nucl Energy 52(7):620–623.  https://doi.org/10.1016/j.pnucene.2010.04.006 CrossRefGoogle Scholar
  9. 9.
    Alwaeli M (2017) Investigation of gamma radiation shielding and compressive strength properties of concrete containing scale and granulated lead-zinc slag wastes. J Clean Prod 166:157–162.  https://doi.org/10.1016/j.jclepro.2017.07.203 CrossRefGoogle Scholar
  10. 10.
    Kaspar William YX, Naus Dan, Graves Herman L III (2013) A review of the effects of radiation on microstructure and properties of concretes used in nuclear power plants. Nuclear Regulatory Commission, RockvilleGoogle Scholar
  11. 11.
    Pomaro B, Gramegna F, Cherubini R, De Nadal V, Salomoni V, Faleschini F (2019) Gamma-ray shielding properties of heavyweight concrete with electric arc Furnace slag as aggregate: an experimental and numerical study. Constr Build Mater 200:188–197.  https://doi.org/10.1016/j.conbuildmat.2018.12.098 CrossRefGoogle Scholar
  12. 12.
    Horszczaruk E, Brzozowski P (2019) Investigation of gamma ray shielding efficiency and physicomechanical performances of heavyweight concrete subjected to high temperature. Constr Build Mater 195:574–582.  https://doi.org/10.1016/j.conbuildmat.2018.09.113 CrossRefGoogle Scholar
  13. 13.
    Yoshimura HR, Ludwigsen JS, McAllaster NM (1996) Use of depleted uranium metal as cask shielding in high-level waste storage, transport, and disposal systems. Sandia National Labs, AlbuquerqueCrossRefGoogle Scholar
  14. 14.
    Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Ye BJ, Kim BG, Jeon MJ, Kim SY, Hong YS (2015) Evaluation and management of lead exposure. Ann Occup Environ Med 27:30.  https://doi.org/10.1186/s40557-015-0085-9 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kaur T, Sharma J, Singh T (2019) Review on scope of metallic alloys in gamma rays shield designing. Prog Nucl Energy 113:95–113.  https://doi.org/10.1016/j.pnucene.2019.01.016 CrossRefGoogle Scholar
  16. 16.
    Singh VP, Badiger NM (2014) Gamma ray and neutron shielding properties of some alloy materials. Ann Nucl Energy 64:301–310.  https://doi.org/10.1016/j.anucene.2013.10.003 CrossRefGoogle Scholar
  17. 17.
    Shruti Nambiar EKO, Yeow John T W (2012) Polymer nanocomposite-based shielding against diagnostic X-rays. J Appl Polym Sci 45:50.  https://doi.org/10.1002/app.37980 CrossRefGoogle Scholar
  18. 18.
    Cao X, Xue X, Jiang T, Li Z, Ding Y, Li Y, Yang H (2010) Mechanical properties of UHMWPE/Sm2O3 composite shielding material. J Rare Earths 28:482–484.  https://doi.org/10.1016/s1002-0721(10)60269-4 CrossRefGoogle Scholar
  19. 19.
    Nambiar S, Yeow JT (2012) Polymer-composite materials for radiation protection. ACS Appl Mater Interfaces 4(11):5717–5726.  https://doi.org/10.1021/am300783d CrossRefPubMedGoogle Scholar
  20. 20.
    Singh VP, Badiger NM (2014) Investigation of gamma and neutron shielding parameters for borate glasses containing NiO and PbO. Phys Res Int 2014:1–7.  https://doi.org/10.1155/2014/954958 CrossRefGoogle Scholar
  21. 21.
    Chen S, Bourham M, Rabiei A (2015) Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams. Radiat Phys Chem 117:12–22.  https://doi.org/10.1016/j.radphyschem.2015.07.003 CrossRefGoogle Scholar
  22. 22.
    Wang P, Tang X, Chai H, Chen D, Qiu Y (2015) Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3 /polyimide gamma ray/neutron shielding material. Fusion Eng Des 101:218–225.  https://doi.org/10.1016/j.fusengdes.2015.09.007 CrossRefGoogle Scholar
  23. 23.
    Chai H, Tang X, Ni M, Chen F, Zhang Y, Chen D, Qiu Y (2016) Preparation and properties of novel, flexible, lead-free X-ray-shielding materials containing tungsten and bismuth(III) oxide. J Appl Polym Sci.  https://doi.org/10.1002/app.43012 CrossRefGoogle Scholar
  24. 24.
    Dubey KA, Chaudhari CV, Suman SK, Raje N, Mondal RK, Grover V, Murali S, Bhardwaj YK, Varshney L (2016) Synthesis of flexible polymeric shielding materials for soft gamma rays: physicomechanical and attenuation characteristics of radiation crosslinked polydimethylsiloxane/Bi2O3 composites. Polym Compos 37(3):756–762.  https://doi.org/10.1002/pc.23232 CrossRefGoogle Scholar
  25. 25.
    Fontainha CCP, Baptista Neto AT, Santos AP, Faria LOd (2016) P(VDF-TrFE)/ZrO2 polymer-composites for X-ray shielding. Mater Res 19(2):426–433.  https://doi.org/10.1590/1980-5373-mr-2015-0576 CrossRefGoogle Scholar
  26. 26.
    Li R, Gu Y, Wang Y, Yang Z, Li M, Zhang Z (2017) Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Mater Res Express 4(3):035035.  https://doi.org/10.1088/2053-1591/aa6651 CrossRefGoogle Scholar
  27. 27.
    Jamil M, Hazlan MH, Ramli RM, Noor Azman NZ (2019) Study of electrospun PVA-based concentrations nanofibre filled with Bi2O3 or WO3 as potential x-ray shielding material. Radiat Phys Chem 156:272–282.  https://doi.org/10.1016/j.radphyschem.2018.11.018 CrossRefGoogle Scholar
  28. 28.
    Halimah MK, Azuraida A, Ishak M, Hasnimulyati L (2019) Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass. J Non-Cryst Solids 512:140–147.  https://doi.org/10.1016/j.jnoncrysol.2019.03.004 CrossRefGoogle Scholar
  29. 29.
    Wu Y, Zhang Q-P, Zhou D, Liu L-P, Xu Y-C, Xu D-G, Zhou Y-L (2017) One-dimensional lead borate nanowhiskers for the joint shielding of neutron and gamma radiation: controlled synthesis, microstructure, and performance evaluation. CrystEngComm 19(48):7260–7269.  https://doi.org/10.1039/c7ce01547j CrossRefGoogle Scholar
  30. 30.
    Zhang W, Xiong H, Wang S, Li M, Gu Y, Li R (2016) Gamma-ray shielding performance of carbon nanotube film material. Mater Express 6(5):456–460.  https://doi.org/10.1166/mex.2016.1326 CrossRefGoogle Scholar
  31. 31.
    Dong Y, Chang S-Q, Zhang H-X, Ren C, Kang B, Dai M-Z, Dai Y-D (2012) Effects of WO3 particle size in WO3/epoxy resin radiation shielding material. Chin Phys Lett 29(10):108102.  https://doi.org/10.1088/0256-307x/29/10/108102 CrossRefGoogle Scholar
  32. 32.
    Kaloshkin SD, Tcherdyntsev VV, Gorshenkov MV, Gulbin VN, Kuznetsov SA (2012) Radiation-protective polymer-matrix nanostructured composites. J Alloy Compd 536:S522–S526.  https://doi.org/10.1016/j.jallcom.2012.01.061 CrossRefGoogle Scholar
  33. 33.
    Kim J, Seo D, Lee BC, Seo YS, Miller WH (2014) Nano-W dispersed gamma radiation shielding materials. Adv Eng Mater 16(9):1083–1089.  https://doi.org/10.1002/adem.201400127 CrossRefGoogle Scholar
  34. 34.
    Chang L, Zhang Y, Liu Y, Fang J, Luan W, Yang X, Zhang W (2015) Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nucl Instrum Methods Phys Res Sect B 356–357:88–93.  https://doi.org/10.1016/j.nimb.2015.04.062 CrossRefGoogle Scholar
  35. 35.
    Noor Azman NZ, Siddiqui SA, Hart R, Low IM (2013) Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide-epoxy composites. Appl Radiat Isot 71(1):62–67.  https://doi.org/10.1016/j.apradiso.2012.09.012 CrossRefPubMedGoogle Scholar
  36. 36.
    Huang Y, Zhang W, Liang L, Xu J, Chen Z (2013) A “Sandwich” type of neutron shielding composite filled with boron carbide reinforced by carbon fiber. Chem Eng J 220:143–150.  https://doi.org/10.1016/j.cej.2013.01.059 CrossRefGoogle Scholar
  37. 37.
    Shin JW, Lee J-W, Yu S, Baek BK, Hong JP, Seo Y, Kim WN, Hong SM, Koo CM (2014) Polyethylene/boron-containing composites for radiation shielding. Thermochim Acta 585:5–9.  https://doi.org/10.1016/j.tca.2014.03.039 CrossRefGoogle Scholar
  38. 38.
    İçelli O, Erzeneoǧlu S, Boncukçuoǧluc R (2003) Measurement of X-ray transmission factors of some boron compounds. Radiat Meas 37(6):613–616.  https://doi.org/10.1016/s1350-4487(03)00049-0 CrossRefGoogle Scholar
  39. 39.
    Hayashi T, Tobita K, Nakamori Y, Orimo S (2009) Advanced neutron shielding material using zirconium borohydride and zirconium hydride. J Nucl Mater 386–388:119–121.  https://doi.org/10.1016/j.jnucmat.2008.12.073 CrossRefGoogle Scholar
  40. 40.
    Kunzel R, Okuno E (2012) Effects of the particle sizes and concentrations on the X-ray absorption by CuO compounds. Appl Radiat Isot 70(4):781–784.  https://doi.org/10.1016/j.apradiso.2011.12.040 CrossRefPubMedGoogle Scholar
  41. 41.
    Botelho MZ, Kunzel R, Okuno E, Levenhagen RS, Basegio T, Bergmann CP (2011) X-ray transmission through nanostructured and microstructured CuO materials. Appl Radiat Isot 69(2):527–530.  https://doi.org/10.1016/j.apradiso.2010.11.002 CrossRefPubMedGoogle Scholar
  42. 42.
    Badawy SM, Abd El-Latif AA (2015) Synthesis and characterizations of magnetite nanocomposite films for radiation shielding. Polym Compos.  https://doi.org/10.1002/pc.23660 CrossRefGoogle Scholar
  43. 43.
    Bedi P, Singh R, Ahuja IS (2018) A comprehensive study for 3D printing of rapid tooling from reinforced waste thermoplastics. In: Reference module in materials science and materials engineering. Elsevier, London.  https://doi.org/10.1016/B978-0-12-803581-8.11495-X Google Scholar
  44. 44.
    Djouani F, Zahra Y, Fayolle B, Kuntz M, Verdu J (2013) Degradation of epoxy coatings under gamma irradiation. Radiat Phys Chem 82:54–62.  https://doi.org/10.1016/j.radphyschem.2012.09.008 CrossRefGoogle Scholar
  45. 45.
    Queiroz DPR, Fraïsse F, Fayolle B, Kuntz M, Verdu J (2010) Radiochemical ageing of epoxy coating for nuclear plants. Radiat Phys Chem 79(3):362–364.  https://doi.org/10.1016/j.radphyschem.2009.08.034 CrossRefGoogle Scholar
  46. 46.
    Shulman H, Ginell WS (1970) Nuclear and space radiation effects on materials. NASAGoogle Scholar
  47. 47.
    Rouif S (2005) Radiation cross-linked polymers: Recent developments and new applications. Nucl Instrum Methods Phys Res Sect B 236(1–4):68–72.  https://doi.org/10.1016/j.nimb.2005.03.252 CrossRefGoogle Scholar
  48. 48.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204.  https://doi.org/10.1016/j.polymer.2008.04.017 CrossRefGoogle Scholar
  49. 49.
    Haupert F, Wetzel B (2005) Reinforcement of thermosetting polymers by the incorporation of micro- and nanoparticles. In: Polymer composites: from nano- to macro-scale. Springer, Boston, pp 45–62.  https://doi.org/10.1007/0-387-26213-x_3
  50. 50.
    Tekin HO, Sayyed MI, Issa SAM (2018) Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat Phys Chem 150:95–100.  https://doi.org/10.1016/j.radphyschem.2018.05.002 CrossRefGoogle Scholar
  51. 51.
    Maggiorella L, Deutsch E, Bourhis J, Barouch G, Borghi E, Devaux C, Levy L (2012) Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol 8(9):1167–1181CrossRefGoogle Scholar
  52. 52.
    Jayaraman V, Bhavesh G, Chinnathambi S, Ganesan S, Aruna P (2014) Synthesis and characterization of hafnium oxide nanoparticles for bio-safety. Mater Express 4(5):375–383.  https://doi.org/10.1166/mex.2014.1190 CrossRefGoogle Scholar
  53. 53.
    Seeram E, Brennan PC (2016) Radiation protection in diagnostic X-ray imaging. Jones & Bartlett Learning, BurlingtonGoogle Scholar
  54. 54.
    Podgoršak EB (2010) Interactions of photons with matter. In: Radiation physics for medical physicists. Springer, Berlin, pp 277–375.  https://doi.org/10.1007/978-3-642-00875-7_7 CrossRefGoogle Scholar
  55. 55.
    Chang DS, Lasley FD, Das IJ, Mendonca MS, Dynlacht JR (2014) Characteristics of photon beams. In: Basic radiotherapy physics and biology. Springer, Cham, pp 69–76.  https://doi.org/10.1007/978-3-319-06841-1_7 Google Scholar
  56. 56.
    Wang Y, Zahid F, Wang J, Guo H (2012) Structure and dielectric properties of amorphous high-κoxides: HfO2, ZrO2, and their alloys. Phys Rev B 85(22):224110.  https://doi.org/10.1103/physrevb.85.224110 CrossRefGoogle Scholar
  57. 57.
    Mahmoud ME, El-Khatib AM, Badawi MS, Rashad AR, El-Sharkawy RM, Thabet AA (2018) Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat Phys Chem 145:160–173CrossRefGoogle Scholar
  58. 58.
    Nanoparticle- and nanofiber-based polymer nanocomposites: an overview. In: Spherical and fibrous filler composites, pp 1–38.  https://doi.org/10.1002/9783527670222.ch1 Google Scholar
  59. 59.
    Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC (2019) Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale 11(11):4653–4682.  https://doi.org/10.1039/c9nr00117d CrossRefPubMedGoogle Scholar
  60. 60.
    Mahesh M (2002) The AAPM/RSNA physics tutorial for residents. Imaging Ther Technol 22(4):949–962Google Scholar
  61. 61.
    Sharanabasappa Kerur BR, Anilkumar S, Hanumaiah B (2010) Determination of X-ray mass attenuation coefficients using HPGe detector. Appl Radiat Isot 68(1):76–83.  https://doi.org/10.1016/j.apradiso.2009.08.004 CrossRefPubMedGoogle Scholar
  62. 62.
    Choppin G, Liljenzin J-O, Rydberg J, Ekberg C (2013) Absorpt Nucl Radiat.  https://doi.org/10.1016/b978-0-12-405897-2.00007-0 CrossRefGoogle Scholar
  63. 63.
    Singh VP, Badiger NM, Kucuk N (2014) Determination of effective atomic numbers using different methods for some low-Z materials. J Nucl Chem 2014:1–7.  https://doi.org/10.1155/2014/725629 CrossRefGoogle Scholar
  64. 64.
    Gerward L, Guilbert N, Jensen KB, Leving H (2004) WinXCom: a program for calculating X-ray attenuation coefficients. Radiat Phys Chem 71:653–654CrossRefGoogle Scholar
  65. 65.
    Hubbell JH, Seltzer SM (1995) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. National Institute of Standards and Technology-PL, GaithersburgCrossRefGoogle Scholar
  66. 66.
    Ouda AS (2015) Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding. Prog Nucl Energy 79:48–55.  https://doi.org/10.1016/j.pnucene.2014.11.009 CrossRefGoogle Scholar
  67. 67.
    Kobayashi S, Hosoda N, Takashima R (1997) Tungsten alloys as radiation protection materials. Nucl Instrum Methods Phys Res Sect A 390(3):426–430CrossRefGoogle Scholar
  68. 68.
    Verdipoor K, Alemi A, Mesbahi A (2018) Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and nano-particles for radiation shielding. Radiat Phys Chem 147:85–90CrossRefGoogle Scholar
  69. 69.
    Badawy SM, Abd El-Latif A (2017) Synthesis and characterizations of magnetite nanocomposite films for radiation shielding. Polym Compos 38(5):974–980CrossRefGoogle Scholar
  70. 70.
    Kaur P, Singh K, Thakur S, Singh P, Bajwa B (2019) Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties. Spectrochim Acta Part A Mol Biomol Spectrosc 206:367–377CrossRefGoogle Scholar
  71. 71.
    Mesbahi A, Ghiasi H (2018) Shielding properties of the ordinary concrete loaded with micro-and nano-particles against neutron and gamma radiations. Appl Radiat Isot 136:27–31CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Nuclear Engineering, College of EngineeringVirginia Commonwealth UniversityRichmondUSA
  2. 2.Porvair Filtration Group, Inc.AshlandUSA
  3. 3.Isotope and Fuel Cycle Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations