Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 431–454 | Cite as

Spatial modelling of Cs-137 and Sr-90 fallout after the Fukushima Nuclear Power Plant accident

  • Sevim Bilici
  • Fatih KülahcıEmail author
  • Ahmet Bilici
Article
  • 68 Downloads

Abstract

Determination of radionuclides transport characteristics is among the most significant research topics, which require extensive multidisciplinary works. The spatial modeling methods are suggested to determine the effects of radioactive fallout. The spatial analysis has a history of approximately 250 years based on micro-scales, but today it has extended to macroscopic systems. After Fukushima accident, radioactive fallout in water and bottom sediment samples are collected from the deepest tectonic freshwater lake in Turkey, Hazar Lake, and Point Cumulative SemiVariogram and Triple Diagram models are employed for depiction their features.

Graphic abstract

Keywords

Geostatistical modelling Radionuclide transport Weighting methods Radioactive fallout Simulation 

Notes

Acknowledgements

A part of this research was supported by TUBITAK-BAYG (The Scientific and Technological Research Council of Turkey-Science People Support Program). We are truly grateful for the excellent management of Editor-in-Chief Zsolt Révay and thank you very much. In addition, we also thank two anonymous referees who have read our article and contributed to its development.

References

  1. 1.
    IAEA (2019) International Atomic Energy Agency. https://www.iaea.org/resources/safety-standards. Accessed 3 July 2019
  2. 2.
    Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471:800–817.  https://doi.org/10.1016/j.scitotenv.2013.10.029 CrossRefPubMedGoogle Scholar
  3. 3.
    Ekberg C, Costa DR, Hedberg M, Jolkkonen M (2018) Nitride fuel for Gen IV nuclear power systems. J Radioanal Nucl Chem 318(3):1713–1725.  https://doi.org/10.1007/s10967-018-6316-0 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dai G, Levy O, Carrasco N (1996) Cloning and characterization of the thyroid iodide transporter. Nature 379(6564):458–460.  https://doi.org/10.1038/379458a0 CrossRefPubMedGoogle Scholar
  5. 5.
    Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137 Cs accidentally discharged from the Fukushima Daiichi Nuclear power plant into the atmosphere. J Nucl Sci Technol 48(7):11134.  https://doi.org/10.3327/jnst.48.1129 CrossRefGoogle Scholar
  6. 6.
    Navarrete JM, Espinosa G, Golzarri JI, Muller G, Zuniga MA, Camacho M (2014) Marine sediments as a radioactive pollution repository in the world. J Radioanal Nucl Chem 299(1):843–847.  https://doi.org/10.1007/s10967-013-2707-4 CrossRefGoogle Scholar
  7. 7.
    Morino Y, Ohara T, Nishizawa M (2011) Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophys Res Lett.  https://doi.org/10.1029/2011gl048689 CrossRefGoogle Scholar
  8. 8.
    Aoyama M (2018) Long-range transport of radiocaesium derived from global fallout and the Fukushima accident in the Pacific Ocean since 1953 through 2017Part I: source term and surface transport. J Radioanal Nucl Chem 318(3):1519–1542.  https://doi.org/10.1007/s10967-018-6244-z CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Inomata Y, Aoyama M, Tsubono T, Tsumune D, Kumamoto Y, Nagai H, Yamagata T, Kajino M, Tanaka YT, Sekiyama TT, Oka E, Yamada M (2018) Estimate of Fukushima-derived radiocaesium in the North Pacific Ocean in summer 2012. J Radioanal Nucl Chem 318(3):1587–1596.  https://doi.org/10.1007/s10967-018-6249-7 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Koarashi J, Atarashi-Andoh M (2019) Low Cs-137 retention capability of organic layers in Japanese forest ecosystems affected by the Fukushima nuclear accident. J Radioanal Nucl Chem 320(1):179–191.  https://doi.org/10.1007/s10967-019-06435-7 CrossRefGoogle Scholar
  11. 11.
    Mahmood ZUW, Yii MW, Khalid MA, Yusof MA, Mohamed N (2018) Marine radioactivity of Cs-134 and Cs-137 in the Malaysian Economic Exclusive Zone after the Fukushima accident. J Radioanal Nucl Chem 318(3):2165–2172.  https://doi.org/10.1007/s10967-018-6306-2 CrossRefGoogle Scholar
  12. 12.
    Nagakawa Y, Uemoto M, Kurosawa T, Shutoh K, Hasegawa H, Sakurai N, Harada E (2019) Comparison of radioactive and stable cesium uptake in aquatic macrophytes affected by the Fukushima Dai-ichi Nuclear Power Plant accident. J Radioanal Nucl Chem 319(1):185–196.  https://doi.org/10.1007/s10967-018-6304-4 CrossRefGoogle Scholar
  13. 13.
    Paterne M, Evrard O, Hatte C, Laceby PJ, Nouet J, Onda Y (2019) Radiocarbon and radiocesium in litter fall at Kawamata, similar to 45 km NW from the Fukushima Dai-ichi nuclear power plant (Japan). J Radioanal Nucl Chem 319(3):1093–1101.  https://doi.org/10.1007/s10967-018-6360-9 CrossRefGoogle Scholar
  14. 14.
    Thiessen KM, Thorne MC, Maul PR, Prohl G, Wheater HS (1999) Modelling radionuclide distribution and transport in the environment. Environ Pollut 100(1–3):151–177.  https://doi.org/10.1016/s0269-7491(99)00090-1 CrossRefPubMedGoogle Scholar
  15. 15.
    Tsumune D, Tsubono T, Aoyama M, Hirose K (2012) Distribution of oceanic Cs-137 from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model. J Environ Radioact 111:100–108.  https://doi.org/10.1016/j.jenvrad.2011.10.007 CrossRefGoogle Scholar
  16. 16.
    Steinhauser G, Saey PRJ (2016) Cs-137 in the meat of wild boars: a comparison of the impacts of Chernobyl and Fukushima. J Radioanal Nucl Chem 307(3):1801–1806.  https://doi.org/10.1007/s10967-015-4417-6 CrossRefPubMedGoogle Scholar
  17. 17.
    Kitto ME, Menia TA, Haines DK, Beach SE, Bradt CJ, Fielman EM, Syed UF, Semkow TM, Bari A, Khan AJ (2013) Airborne gamma-ray emitters from Fukushima detected in New York State. J Radioanal Nucl Chem 296(1):49–56.  https://doi.org/10.1007/s10967-012-2043-0 CrossRefGoogle Scholar
  18. 18.
    Lee SH, Heo DH, Kang HB, Oh PJ, Lee JM, Park TS, Lee KB, Oh JS, Suh JK (2013) Distribution of I-131, Cs-134, Cs-137 and Pu-239, Pu-240 concentrations in Korean rainwater after the Fukushima nuclear power plant accident. J Radioanal Nucl Chem 296(2):727–731.  https://doi.org/10.1007/s10967-012-2030-5 CrossRefGoogle Scholar
  19. 19.
    Zhang WH, Friese J, Ungar K (2013) The ambient gamma dose-rate and the inventory of fission products estimations with the soil samples collected at Canadian embassy in Tokyo during Fukushima nuclear accident. J Radioanal Nucl Chem 296(1):69–73.  https://doi.org/10.1007/s10967-012-2040-3 CrossRefGoogle Scholar
  20. 20.
    Katata G, Chino M, Kobayashi T, Terada H, Ota M, Nagai H, Kajino M, Draxler R, Hort MC, Malo A, Torii T, Sanada Y (2015) Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos Chem Phys 15(2):1029–1070.  https://doi.org/10.5194/acp-15-1029-2015 CrossRefGoogle Scholar
  21. 21.
    Melgunov M, Pokhilenko N, Strakhovenko V, Sukhorukov F, Chuguevskii A (2012) Fallout traces of the Fukushima NPP accident in southern West Siberia (Novosibirsk, Russia). Environ Sci Pollut Res 19(4):1323–1325Google Scholar
  22. 22.
    MEXT Culture S, Science and Technology JM of E MEXT, Japan Ministry of Education (2011) Reading of environmental radioactivity level by prefecture http://www.mext.go.jp/. Accessed 10 Oct 2011
  23. 23.
    García FP, García MF (2012) Traces of fission products in southeast Spain after the Fukushima nuclear accident. J Environ Radioact 114:146–151Google Scholar
  24. 24.
    Terada H, Katata G, Chino M, Nagai H (2012) Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J Environ Radioact 112:141–154PubMedGoogle Scholar
  25. 25.
    Povinec P, Hirose K, Aoyama M (2013) Fukushima accident: radioactivity impact on the environment. NewnesGoogle Scholar
  26. 26.
    Imanaka T, Hayashi G, Endo S (2015) Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1. J Radiat Res 56(suppl_1):i56–i61PubMedPubMedCentralGoogle Scholar
  27. 27.
    Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48(7):1129–1134Google Scholar
  28. 28.
    Sholkovitz ER (1983) The geochemistry of plutonium in fresh and marine water environments. Earth Sci Rev 19(2):95–161.  https://doi.org/10.1016/0012-8252(83)90029-6 CrossRefGoogle Scholar
  29. 29.
    Gauthier-Lafaye F, Holliger P, Blanc PL (1996) Natural fission reactors in the Franceville basin, Gabon: a review of the conditions and results of a “critical event” in a geologic system. Geochim Cosmochim Acta 60(23):4831–4852.  https://doi.org/10.1016/S0016-7037(96)00245-1 CrossRefGoogle Scholar
  30. 30.
    Tsumune D, Aoyama M, Hirose K (2003) Behavior of 137Cs concentrations in the North Pacific in an ocean general circulation model. J Geophys Res C Oceans 108(8):11–18Google Scholar
  31. 31.
    Matiullah A, Ahad A, ur Rehman S, ur Rehman S, Faheem M (2004) Measurement of radioactivity in the soil of Bahawalpur division, Pakistan. Radiat Prot Dosimet 112(3):443–447.  https://doi.org/10.1093/rpd/nch409 CrossRefGoogle Scholar
  32. 32.
    Külahcı F, Şen Z (2008) Multivariate statistical analyses of artificial radionuclides and heavy metals contaminations in deep mud of Keban Dam Lake, Turkey. Appl Radiat Isot 66(2):236–246.  https://doi.org/10.1016/j.apradiso.2007.08.014 CrossRefPubMedGoogle Scholar
  33. 33.
    Ferrand E, Eyrolle F, Radakovitch O, Provansal M, Dufour S, Vella C, Raccasi G, Gurriaran R (2012) Historical levels of heavy metals and artificial radionuclides reconstructed from overbank sediment records in lower Rhône River (South-East France). Geochim Cosmochim Acta 82:163–182.  https://doi.org/10.1016/j.gca.2011.11.023 CrossRefGoogle Scholar
  34. 34.
    Honda MC, Aono T, Aoyama M, Hamajima Y, Kawakami H, Kitamura M, Masumoto Y, Miyazawa Y, Takigawa M, Saino T (2012) Dispersion of artificial caesium-134 and -137 in the western North Pacific one month after the Fukushima accident. Geochem J 46(4):e1–e9Google Scholar
  35. 35.
    Wallace SH, Shaw S, Morris K, Small JS, Fuller AJ, Burke IT (2012) Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: implications for 90Sr mobility at contaminated nuclear sites. Appl Geochem 27(8):1482–1491.  https://doi.org/10.1016/j.apgeochem.2012.04.007 CrossRefGoogle Scholar
  36. 36.
    Ashraf MA, Khan AM, Ahmad M, Akib S, Balkhair KS, Bakar NKA (2014) Release, deposition and elimination of radiocesium 137Cs in the terrestrial environment. Environ Geochem Health 36(6):1165–1190.  https://doi.org/10.1007/s10653-014-9620-9 CrossRefPubMedGoogle Scholar
  37. 37.
    Topcuoglu S, Turer A, Gungor N, Kirbasoglu C (2003) Monitoring of anthropogenic and natural radionuclides and gamma absorbed dose rates in eastern Anatolia. J Radioanal Nucl Chem 258(3):547–550.  https://doi.org/10.1023/b:jrnc.0000011750.97805.78 CrossRefGoogle Scholar
  38. 38.
    Garraffo ZD, Kim HC, Mehra A, Spindler T, Rivin I, Tolman HL (2016) Modeling of 137Cs as a tracer in a regional model for the western Pacific, after the Fukushima-Daiichi nuclear power plant accident of March 2011. Weather Forecast 31(2):553–579.  https://doi.org/10.1175/WAF-D-13-00101.1 CrossRefGoogle Scholar
  39. 39.
    Baklanov A, Sørensen JH (2001) Parameterisation of radionuclide deposition in atmospheric long-range transport modelling. Phys Chem Earth Part B 26(10):787–799.  https://doi.org/10.1016/S1464-1909(01)00087-9 CrossRefGoogle Scholar
  40. 40.
    Bailly du Bois P, Dumas F (2005) Fast hydrodynamic model for medium- and long-term dispersion in seawater in the English Channel and southern North Sea, qualitative and quantitative validation by radionuclide tracers. Ocean Model Online 9(2):169–210.  https://doi.org/10.1016/j.ocemod.2004.07.004 CrossRefGoogle Scholar
  41. 41.
    Bocquet M (2005) Reconstruction of an atmospheric tracer source using the principle of maximum entropy. I: Theory. Q J R Meteorol Soc 131(610 B):2191–2208.  https://doi.org/10.1256/qj.04.67 CrossRefGoogle Scholar
  42. 42.
    Bocquet M (2005) Grid resolution dependence in the reconstruction of an atmospheric tracer source. Nonlinear Process Geophys 12(2):219–234Google Scholar
  43. 43.
    Krysta M, Bocquet M (2007) Source reconstruction of an accidental radionuclide release at European scale. Q J R Meteorol Soc 133(623):529–544.  https://doi.org/10.1002/qj.3 CrossRefGoogle Scholar
  44. 44.
    Estournel C, Bosc E, Bocquet M, Ulses C, Marsaleix P, Winiarek V, Osvath I, Nguyen C, Duhaut T, Lyard F, Michaud H, Auclair F (2012) Assessment of the amount of cesium-137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters. J Geophys Res C Oceans.  https://doi.org/10.1029/2012jc007933 CrossRefGoogle Scholar
  45. 45.
    Terada H, Katata G, Chino M, Nagai H (2012) Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J Environ Radioact 112:141–154.  https://doi.org/10.1016/j.jenvrad.2012.05.023 CrossRefPubMedGoogle Scholar
  46. 46.
    Winiarek V, Bocquet M, Saunier O, Mathieu A (2012) Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant. J Geophys Res D Atmos.  https://doi.org/10.1029/2011jd016932 CrossRefGoogle Scholar
  47. 47.
    Christoudias T, Lelieveld J (2013) Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident. Atmos Chem Phys 13(3):1425–1438.  https://doi.org/10.5194/acp-13-1425-2013 CrossRefGoogle Scholar
  48. 48.
    Cunha IIL, Figueira RCL, Saito RT (1999) Application of radiochemical methods and dispersion model in the study of environmental pollution in Brazil. J Radioanal Nucl Chem 239(3):477–482.  https://doi.org/10.1007/bf02349054 CrossRefGoogle Scholar
  49. 49.
    El Mrabet R, Abril JM, Manjon G, Tenorio RG (2004) Experimental and modeling study of Am-241 uptake by suspended matter in freshwater environment from southern Spain. J Radioanal Nucl Chem 261(1):137–144.  https://doi.org/10.1023/B:JRNC.0000030947.24584.dc CrossRefGoogle Scholar
  50. 50.
    Jones KA, Prosser SL (1997) A comparison of Pu239 + 240 post-mortem measurements with estimates based on current ICRP models. J Radioanal Nucl Chem 226(1–2):129–133.  https://doi.org/10.1007/bf02063636 CrossRefGoogle Scholar
  51. 51.
    Kim S, Min BI, Park K, Yang BM, Kim J, Suh KS (2018) Evaluation of radionuclide concentration in agricultural food produced in Fukushima Prefecture following Fukushima accident using a terrestrial food chain model. J Radioanal Nucl Chem 316(3):1091–1098.  https://doi.org/10.1007/s10967-018-5779-3 CrossRefGoogle Scholar
  52. 52.
    Kumar A, Rout S, Chopra MK, Mishra DG, Singhal RK, Ravi PM, Tripathi RM (2014) Modeling of Cs-137 migration in cores of marine sediments of Mumbai Harbor Bay. J Radioanal Nucl Chem 301(2):615–626.  https://doi.org/10.1007/s10967-014-3116-z CrossRefGoogle Scholar
  53. 53.
    Perianez R, Pascual-Granged A (2007) A rapid response model for simulating radioactivity dispersion in the Strait of Gibraltar. J Radioanal Nucl Chem 274(2):301–306.  https://doi.org/10.1007/s10967-007-1115-z CrossRefGoogle Scholar
  54. 54.
    Sert I, Eftelioglu M, Ozel FE (2017) Historical evolution of heavy metal pollution and recent records in Lake Karagol sediment cores using Pb-210 models, western Turkey. J Radioanal Nucl Chem 314(3):2155–2169.  https://doi.org/10.1007/s10967-017-5627-x CrossRefGoogle Scholar
  55. 55.
    Sert I, Ozel FE, Yaprak G, Eftelioglu M (2016) Determination of the latest sediment accumulation rates and pattern by performing Pb-210 models and Cs-137 technique in the Lake Bafa, Mugla, Turkey. J Radioanal Nucl Chem 307(1):313–323.  https://doi.org/10.1007/s10967-015-4234-y CrossRefGoogle Scholar
  56. 56.
    Tsumune D, Aoyama M, Hirose K, Maruyama K, Nakashiki N (2001) Calculation of artificial radionuclides in the ocean by an ocean general circulation model. J Radioanal Nucl Chem 248(3):777–783.  https://doi.org/10.1023/a:1010665300905 CrossRefGoogle Scholar
  57. 57.
    Ueda S, Kondo K, Inaba J, Kutsukake H, Nakata K (2006) Development and application of an eco-hydrodynamic model for radionuclides in a brackish lake: case study of Lake Obuchi, Japan, bordered by nuclear fuel cycling facilities. J Radioanal Nucl Chem 268(2):261–273.  https://doi.org/10.1556/jrnc.268.2006.2.13 CrossRefGoogle Scholar
  58. 58.
    Yamamoto K, Tagami K, Uchida S, Ishii N (2015) Model estimation of Cs-137 concentration change with time in seawater and sediment around the Fukushima Daiichi Nuclear Power Plant site considering fast and slow reactions in the seawater-sediment systems. J Radioanal Nucl Chem 304(2):867–881.  https://doi.org/10.1007/s10967-014-3897-0 CrossRefGoogle Scholar
  59. 59.
    Possolo A (2013) Five examples of assessment and expression of measurement uncertainty. Appl Stoch Models Bus Ind 29(1):1–18.  https://doi.org/10.1002/asmb.1947 CrossRefGoogle Scholar
  60. 60.
    Evangelou E, Maroulas V (2017) Sequential empirical Bayes method for filtering dynamic spatiotemporal processes. Spat Stat 21:114–129.  https://doi.org/10.1016/j.spasta.2017.06.006 CrossRefGoogle Scholar
  61. 61.
    Marley NA, Gaffney JS, Orlandini KA, Cunningham MM (1993) Evidence for radionuclide transport and mobilization in a shallow, sandy aquifer. Environ Sci Technol 27(12):2456–2461.  https://doi.org/10.1021/es00048a022 CrossRefGoogle Scholar
  62. 62.
    Pollanen R, Valkama I, Toivonen H (1997) Transport of radioactive particles from the Chernobyl accident. Atmos Environ 31(21):3575–3590.  https://doi.org/10.1016/s1352-2310(97)00156-8 CrossRefGoogle Scholar
  63. 63.
    Kaste JM, Heimsath AM, Bostick BC (2007) Short-term soil mixing quantified with fallout radionuclides. Geology 35(3):243–246.  https://doi.org/10.1130/g23355a.1 CrossRefGoogle Scholar
  64. 64.
    Hirose K (2012) 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results. J Environ Radioact 111:13–17.  https://doi.org/10.1016/j.jenvrad.2011.09.003 CrossRefPubMedGoogle Scholar
  65. 65.
    Stohl A, Seibert P, Wotawa G, Arnold D, Burkhart JF, Eckhardt S, Tapia C, Vargas A, Yasunari TJ (2012) Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos Chem Phys 12(5):2313–2343.  https://doi.org/10.5194/acp-12-2313-2012 CrossRefGoogle Scholar
  66. 66.
    Külahcı F, Şen Z (2007) Spatial dispersion modeling of 90 Sr by point cumulative semivariogram at Keban Dam Lake, Turkey. Appl Radiat Isot 65(9):1070–1077PubMedGoogle Scholar
  67. 67.
    Helton JC (1994) Treatment of uncertainty in performance assessments for complex systems. Risk Anal 14(4):483–511.  https://doi.org/10.1111/j.1539-6924.1994.tb00266.x CrossRefGoogle Scholar
  68. 68.
    Reason J (1990) The contribution of latent human failures to the breakdown of complex systems. Philos Trans R Soc Lond B Biol Sci 327(1241):475–484.  https://doi.org/10.1098/rstb.1990.0090 CrossRefPubMedGoogle Scholar
  69. 69.
    Schulz TL (2006) Westinghouse AP1000 advanced passive plant. Nucl Eng Des 236(14–16):1547–1557.  https://doi.org/10.1016/j.nucengdes.2006.03.049 CrossRefGoogle Scholar
  70. 70.
    Stohl A, Seibert P, Wotawa G, Arnold D, Burkhart JF, Eckhardt S, Tapia C, Vargas A, Yasunari TJ (2012) Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos Chem Phys 12(5):2313–2343.  https://doi.org/10.5194/acp-12-2313-2012 CrossRefGoogle Scholar
  71. 71.
    Yasunari TJ, Stohl A, Hayano RS, Burkhart JF, Eckhardt S, Yasunari T (2011) Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc Natl Acad Sci USA 108(49):19530–19534.  https://doi.org/10.1073/pnas.1112058108 CrossRefPubMedGoogle Scholar
  72. 72.
    Martinho M, Freitas MC (2009) Spatial regression analysis between air pollution and childhood leukaemia in Portugal. J Radioanal Nucl Chem 281(2):175–179.  https://doi.org/10.1007/s10967-009-0124-5 CrossRefGoogle Scholar
  73. 73.
    Menezes MAdBC, Jacimovic R, Pereira C (2015) Spatial distribution of neutron flux in geological larger sample analysis at CDTN/CNEN, Brazil. J Radioanal Nucl Chem 306(3):611–616.  https://doi.org/10.1007/s10967-015-4226-y CrossRefGoogle Scholar
  74. 74.
    Şen Z (2009) Spatial modeling principles in Earth sciences. Springer, BerlinGoogle Scholar
  75. 75.
    Zoran M, Savastru R, Savastru D (2012) Ground based radon (Rn-222) observations in Bucharest, Romania and their application to geophysics. J Radioanal Nucl Chem 293(3):877–888.  https://doi.org/10.1007/s10967-012-1761-7 CrossRefGoogle Scholar
  76. 76.
    Zoran MA, Dida MR, Zoran A, Zoran LF, Dida A (2013) Outdoor (222)Radon concentrations monitoring in relation with particulate matter levels and possible health effects. J Radioanal Nucl Chem 296(3):1179–1192.  https://doi.org/10.1007/s10967-012-2259-z CrossRefGoogle Scholar
  77. 77.
    Fowler SW, Buat-Menard P, Yokoyama Y, Ballestra S, Holm E, Nguyen HV (1987) Rapid removal of Chernobyl fallout from Mediterranean surface waters by biological activity. Nature 329(6134):56–58PubMedGoogle Scholar
  78. 78.
    Cressie N (1991) Statistics for spatial data. Wiley, HobokenGoogle Scholar
  79. 79.
    Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int 108(1):16–34.  https://doi.org/10.1111/j.1365-246X.1992.tb00836.x CrossRefGoogle Scholar
  80. 80.
    Braun K, Böhnke F, Stark T (2012) Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations. Acta Oto-Laryngol 132(6):603–613.  https://doi.org/10.3109/00016489.2011.653670 CrossRefGoogle Scholar
  81. 81.
    Tanaka K, Sakaguchi A, Kanai Y, Tsuruta H, Shinohara A, Takahashi Y (2013) Heterogeneous distribution of radiocesium in aerosols, soil and particulate matters emitted by the Fukushima Daiichi Nuclear Power Plant accident: retention of micro-scale heterogeneity during the migration of radiocesium from the air into ground and river systems. J Radioanal Nucl Chem 295(3):1927–1937.  https://doi.org/10.1007/s10967-012-2160-9 CrossRefGoogle Scholar
  82. 82.
    Wieland E, Mace N, Daehn R, Kunz D, Tits J (2010) Macro- and micro-scale studies on U(VI) immobilization in hardened cement paste. J Radioanal Nucl Chem 286(3):793–800.  https://doi.org/10.1007/s10967-010-0742-y CrossRefGoogle Scholar
  83. 83.
    Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12(1):53–64.  https://doi.org/10.1046/j.1466-822X.2003.00322.x CrossRefGoogle Scholar
  84. 84.
    Halley E (1753) An historical account of the trade winds, and monsoons, observable in the seas between and near the tropicks, with an attempt to assign the phisical cause of the said winds. Philos Trans (1683-1775) 16:153–168Google Scholar
  85. 85.
    Student (1907) On the error of counting with a haemacytometer. Biometrika 5:351–360Google Scholar
  86. 86.
    Lawrie JA (1962) The spatial distribution of rapid geomagnetic fluctuations. Geophys J Int 7(1):102–110.  https://doi.org/10.1111/j.1365-246X.1962.tb02255.x CrossRefGoogle Scholar
  87. 87.
    Ernst WG (1965) Mineral parageneses in franciscan metamorphic rocks, Panoche Pass. California. Bull Geol Soc Am 76(8):879–914.  https://doi.org/10.1130/0016-7606(1965)76%5b879:mpifmr%5d2.0.co;2 CrossRefGoogle Scholar
  88. 88.
    Lomnitz C (1966) Statistical prediction of earthquakes. Rev Geophys 4(3):377–393.  https://doi.org/10.1029/RG004i003p00377 CrossRefGoogle Scholar
  89. 89.
    Strick E (1967) The determination of Q, dynamic viscosity and transient creep curves from wave propagation measurements. Geophys J R Astron Soc 13(1–3):197–218.  https://doi.org/10.1111/j.1365-246X.1967.tb02154.x CrossRefGoogle Scholar
  90. 90.
    Becchi I, Caporali E, Castellani L, Palmisano E, Castelli F (1995) Hydrological control of flooding: Tuscany. Surv Geophys 16(2):227–252.  https://doi.org/10.1007/BF00665781 CrossRefGoogle Scholar
  91. 91.
    Coroniti FV (1973) The ring current and magnetic storms. Radio Sci 8(11):1007–1011.  https://doi.org/10.1029/RS008i011p01007 CrossRefGoogle Scholar
  92. 92.
    Mo T, Suttle AD, Sackett WM (1973) Uranium concentrations in marine sediments. Geochim Cosmochim Acta 37(1):35–51.  https://doi.org/10.1016/0016-7037(73)90242-1 CrossRefGoogle Scholar
  93. 93.
    Wing AA, Emanuel K, Holloway CE, Muller C (2017) Convective self-aggregation in numerical simulations: a review. Surv Geophys 38(6):1173–1197.  https://doi.org/10.1007/s10712-017-9408-4 CrossRefGoogle Scholar
  94. 94.
    Filho CRdF, Nunes AR, Leite EP, Monteiro LVS, Xavier RP (2007) Spatial analysis of airborne geophysical data applied to geological mapping and mineral prospecting in the Serra Leste Region, Carajás Mineral Province, Brazil. Surv Geophys 28(5–6):377–405.  https://doi.org/10.1007/s10712-008-9031-5 CrossRefGoogle Scholar
  95. 95.
    Slater L (2007) Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries—a review. Surv Geophys 28(2–3):169–197.  https://doi.org/10.1007/s10712-007-9022-y CrossRefGoogle Scholar
  96. 96.
    Tenzer R, Hirt C, Claessens S, Novák P (2015) Spatial and spectral representations of the geoid-to-quasigeoid correction. Surv Geophys 36(5):627–658.  https://doi.org/10.1007/s10712-015-9337-z CrossRefGoogle Scholar
  97. 97.
    Külahcı F, Şen Z (2014) On the Correction of spatial and statistical uncertainties in systematic measurements of 222Rn for earthquake prediction. Surv Geophys 35(2):449–478.  https://doi.org/10.1007/s10712-013-9273-8 CrossRefGoogle Scholar
  98. 98.
    Külahcı F, Şen Z (2009) Potential utilization of the absolute point cumulative semivariogram technique for the evaluation of distribution coefficient. J Hazard Mater 168(2–3):1387–1396.  https://doi.org/10.1016/j.jhazmat.2009.03.027 CrossRefPubMedGoogle Scholar
  99. 99.
    Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266.  https://doi.org/10.2113/gsecongeo.58.8.1246 CrossRefGoogle Scholar
  100. 100.
    Şen Z (1998) Point cumulative semivariogram for identification of heterogeneities in regional seismicity of Turkey. Math Geol 30(7):767–787Google Scholar
  101. 101.
    Külahcı F, Şen Z (2009) Spatio-temporal modeling of 210Pb transportation in lake environments. J Hazard Mater 165(1–3):525–532.  https://doi.org/10.1016/j.jhazmat.2008.10.026 CrossRefPubMedGoogle Scholar
  102. 102.
    Acar R, Sengul S (2012) The estimation of average areal snowfall by conventional methods and the percentage weighting polygon method in the Northeast Anatolia region, Turkey. Energy Educ Sci Technol Part A Energy Sci Res 29(1):11–22Google Scholar
  103. 103.
    Tarawneh Q, Şen Z (2012) Spatial climate variation pattern and regional prediction of rainfall in Jordan. Water Environ J 26(2):252–260.  https://doi.org/10.1111/j.1747-6593.2011.00284.x CrossRefGoogle Scholar
  104. 104.
    Anderson OL (1986) Properties of iron at the Earth’s core conditions. Geophys J Int 84(3):561–579.  https://doi.org/10.1111/j.1365-246X.1986.tb04371.x CrossRefGoogle Scholar
  105. 105.
    Dubois M, Royer JJ, Weisbrod A, Shtuka A (1993) Reconstruction of low-temperature binary phase diagrams using a constrained least squares method: application to the H2O–CsCl system. Eur J Mineral 5(6):1145–1152.  https://doi.org/10.1127/ejm/5/6/1145 CrossRefGoogle Scholar
  106. 106.
    Nagahara H, Kushiro I, Mysen BO (1994) Evaporation of olivine: low pressure phase relations of the olivine system and its implication for the origin of chondritic components in the solar nebula. Geochim Cosmochim Acta 58(8):1951–1963.  https://doi.org/10.1016/0016-7037(94)90426-X CrossRefGoogle Scholar
  107. 107.
    Sato H, Niizato T, Amano K, Tanaka S, Aoki K (2013) Investigation and research on depth distribution in soil of radionuclides released by the TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, pp 277–282.  https://doi.org/10.1557/opl.2013.393 Google Scholar
  108. 108.
    Sağıroğlu A, Çetindağ B (1995) Hazar Gölü’nün Kürk ve Mogal derelerinden kaynaklanan şiltleşmesi, I. Hazar Gölü ve Çevresi Sempozyumu, Çağ Ofset, Elazığ, pp 33–39Google Scholar
  109. 109.
    Sungurlu O, Perinçek D, Kurt G, Tuna E, Dülger S, Çelikdemir E, Naz H (1985) Geology of the Elazığ-Hazar-Palu area. Bull Turk Assoc Pet Geol 29:83–191Google Scholar
  110. 110.
    Eriş KK, Ön SA, Çağatay MN, Ülgen UB, Ön ZB, Gürocak Z, Arslan TN, Akkoca DB, Damcı E, İnceöz M (2018) Late Pleistocene to Holocene paleoenvironmental evolution of Lake Hazar, Eastern Anatolia, Turkey. Quatern Int 486:4–16Google Scholar
  111. 111.
    Moreno DG, Hubert-Ferrari A, Moernaut J, Fraser J, Boes X, Van Daele M, Avsar U, Cagatay N, De Batist M (2011) Structure and recent evolution of the Hazar Basin: a strike-slip basin on the East Anatolian Fault, Eastern Turkey. Basin Res 23(2):191–207Google Scholar
  112. 112.
    Hempton M, Dunne L, Dewey J (1983) Sedimentation in an active strike-slip basin, southeastern Turkey. J Geol 91(4):401–412Google Scholar
  113. 113.
    Aközcan S, Külahcı F, Mercan Y (2018) A suggestion to radiological hazards characterization of 226Ra, 232Th, 40 K and 137Cs: spatial distribution modelling. J Hazard Mater 353:476–489PubMedGoogle Scholar
  114. 114.
    Aközcan S, Külahcı F (2018) Descriptive statistics and risk assessment for the control of seasonal pollutant effects of 210 Po and 210 Pb in coastal waters (Çanakkale, Turkey). J Radioanal Nucl Chem 315(2):285–292Google Scholar
  115. 115.
    Şen Z (1989) Cumulative semivariogram models of regionalized variables. Math Geol 21(8):891–903.  https://doi.org/10.1007/BF00894454 CrossRefGoogle Scholar
  116. 116.
    Şen Z (1992) Standard cumulative semivariograms of stationary stochastic processes and regional correlation. Math Geol 24(4):417–435.  https://doi.org/10.1007/BF00891272 CrossRefGoogle Scholar
  117. 117.
    Davis JC, Sampson RJ (1986) Statistics and data analysis in geology, vol 646. Wiley, New YorkGoogle Scholar
  118. 118.
    Turalioglu FS, Bayraktar H (2005) Assessment of regional air pollution distribution by point cumulative semivariogram method at Erzurum urban center, Turkey. Stoch Environ Res Risk Assess 19(1):41–47.  https://doi.org/10.1007/s00477-004-0203-7 CrossRefGoogle Scholar
  119. 119.
    Külahcı F, Şen Z, Kazanç S (2008) Cesium concentration spatial distribution modeling by point cumulative semivariogram. Water Air Soil Pollut 195(1–4):151–160.  https://doi.org/10.1007/s11270-008-9734-8 CrossRefGoogle Scholar
  120. 120.
    Özger M, Şen Z (2007) Triple diagram method for the prediction of wave height and period. Ocean Eng 34(7):1060–1068.  https://doi.org/10.1016/j.oceaneng.2006.05.006 CrossRefGoogle Scholar
  121. 121.
    Suursaar Ü, Kullas T (2009) Decadal variations in wave heights off Cape Kelba, Saaremaa Island, and their relationships with changes in wind climate. Oceanologia 51(1):39–61.  https://doi.org/10.5697/oc.51-1.039 CrossRefGoogle Scholar
  122. 122.
    Zaitseva-Pärnaste I, Suursaar Ü, Kullas T, Lapimaa S, Soomere T (2009) Seasonal and long-term variations of wave conditions in the northern baltic sea. J Coast Res (SPEC. ISSUE 56):277–281Google Scholar
  123. 123.
    Vanem E (2011) Long-term time-dependent stochastic modelling of extreme waves. Stoch Environ Res Risk Assess 25(2):185–209.  https://doi.org/10.1007/s00477-010-0431-y CrossRefGoogle Scholar
  124. 124.
    Sharma LK, Ghosh AK, Nair RN, Chopra M, Sunny F, Puranik VD (2014) Inverse modeling for aquatic source and transport parameters identification and its application to Fukushima nuclear accident. Environ Model Assess 19(3):193–206.  https://doi.org/10.1007/s10666-013-9391-1 CrossRefGoogle Scholar
  125. 125.
    Povinec PP, Hirose K, Aoyama M (2013) Fukushima accident: radioactivity impact on the environment. Elsevier Inc., Amsterdam.  https://doi.org/10.1016/C2012-0-06837-8 CrossRefGoogle Scholar
  126. 126.
    Minoura K, Yamada T, Hirano SI, Sugihara S (2014) Movement of radiocaesium fallout released by the 2011 Fukushima nuclear accident. Nat Hazards 73(3):1843–1862.  https://doi.org/10.1007/s11069-014-1171-y CrossRefGoogle Scholar
  127. 127.
    Periáñez R, Bezhenar R, Brovchenko I, Duffa C, Iosjpe M, Jung KT, Kobayashi T, Lamego F, Maderich V, Min BI, Nies H, Osvath I, Outola I, Psaltaki M, Suh KS, de With G (2016) Modelling of marine radionuclide dispersion in IAEA MODARIA program: lessons learnt from the Baltic Sea and Fukushima scenarios. Sci Total Environ 569–570:594–602.  https://doi.org/10.1016/j.scitotenv.2016.06.131 CrossRefPubMedGoogle Scholar
  128. 128.
    Gaucher E, Robelin C, Matray JM, Négrel G, Gros Y, Heitz JF, Vinsot A, Rebours H, Cassagnabère A, Bouchet A (2004) ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian formation by investigative drilling. Phys Chem Earth 29(1):55–77.  https://doi.org/10.1016/j.pce.2003.11.006 CrossRefGoogle Scholar
  129. 129.
    Rogers H, Bowers J, Gates-Anderson D (2012) An isotope dilution-precipitation process for removing radioactive cesium from wastewater. J Hazard Mater 243:124–129.  https://doi.org/10.1016/j.jhazmat.2012.10.006 CrossRefGoogle Scholar
  130. 130.
    Mahura AG, Baklanov AA, Sørensen JH, Parker FL, Novikov V, Brown K, Compton KL (2005) Assessment of potential atmospheric transport and deposition patterns due to Russian pacific fleet operations. Environ Monit Assess 101(1–3):261–287.  https://doi.org/10.1007/s10661-005-0295-7 CrossRefPubMedGoogle Scholar
  131. 131.
    Yamamoto M, Takada T, Nagao S, Koike T, Shimada K, Hoshi M, Zhumadilov K, Shima T, Fukuoka M, Imanaka T, Endo S, Sakaguchi A, Kimura S (2012) An early survey of the radioactive contamination of soil due to the Fukushima Dai-ichi Nuclear Power Plant accident, with emphasis on plutonium analysis. Geochem J 46(4):341–353Google Scholar
  132. 132.
    Bopp RF, Simpson HJ, Olsen CR, Trier RM, Kostyk N (1982) Chlorinated hydrocarbons and radionuclide chronologies in sediments of the Hudson River and estuary, New York. Environ Sci Technol 16(10):666–676.  https://doi.org/10.1021/es00104a008 CrossRefGoogle Scholar
  133. 133.
    Sun H, Semkow TM (1998) Mobilization of thorium, radium and radon radionuclides in ground water by successive alpha-recoils. J Hydrol 205(1–2):126–136.  https://doi.org/10.1016/S0022-1694(97)00154-6 CrossRefGoogle Scholar
  134. 134.
    Adriani O, Barbarino GC, Bazilevskaya GA, Bellotti R, Boezio M, Bogomolov EA, Bonechi L, Bongi M, Bonvicini V, Bottai S, Bruno A, Cafagna F, Campana D, Carlson P, Casolino M, Castellini G, De Pascale MP, De Rosa G, De Simone N, Di Felice V, Galper AM, Grishantseva L, Hofverberg P, Koldashov SV, Krutkov SY, Kvashnin AN, Leonov A, Malvezzi V, Marcelli L, Menn W, Mikhailov VV, Mocchiutti E, Orsi S, Osteria G, Papini P, Pearce M, Picozza P, Ricci M, Ricciarini SB, Simon M, Sparvoli R, Spillantini P, Stozhkov YI, Vacchi A, Vannuccini E, Vasilyev G, Voronov SA, Yurkin YT, Zampa G, Zampa N, Zverev VG (2009) An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458(7238):607–609.  https://doi.org/10.1038/nature07942 CrossRefPubMedGoogle Scholar
  135. 135.
    von Blanckenburg F (2005) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 237(3–4):462–479.  https://doi.org/10.1016/j.epsl.2005.06.030 CrossRefGoogle Scholar
  136. 136.
    Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142(1–2):1–53.  https://doi.org/10.1016/j.jhazmat.2007.01.006 CrossRefPubMedGoogle Scholar
  137. 137.
    Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012.  https://doi.org/10.1256/qj.04.176 CrossRefGoogle Scholar
  138. 138.
    Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in ground water at the Nevada Test Site. Nature 397(6714):56–59.  https://doi.org/10.1038/16231 CrossRefGoogle Scholar
  139. 139.
    Chen Z, Montavon G, Ribet S, Guo Z, Robinet JC, David K, Tournassat C, Grambow B, Landesman C (2014) Key factors to understand in situ behavior of Cs in Callovo-Oxfordian clay-rock (France). Chem Geol 387(1):47–58.  https://doi.org/10.1016/j.chemgeo.2014.08.008 CrossRefGoogle Scholar
  140. 140.
    Hooper DU, Chapin Iii FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35Google Scholar
  141. 141.
    Atkinson PM, Lloyd CD (2010) geoENV VII—geostatistics for environmental applications, vol 16. Springer, BerlinGoogle Scholar
  142. 142.
    Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley, HobokenGoogle Scholar
  143. 143.
    Shapiro SS, Wilk MB, Chen HJ (1968) A comparative study of various tests for normality. J Am Stat Assoc 63(324):1343–1372Google Scholar
  144. 144.
    Zorer ÖS (2019) Evaluations of environmental hazard parameters of natural and some artificial radionuclides in river water and sediments. Microchem J 145:762–766Google Scholar
  145. 145.
    Ergül HA, Belivermiş M, Kılıç Ö, Topcuoğlu S, Çotuk Y (2013) Natural and artificial radionuclide activity concentrations in surface sediments of Izmit Bay, Turkey. J Environ Radioact 126:125–132PubMedGoogle Scholar
  146. 146.
    Korkulu Z, Özkan N (2013) Determination of natural radioactivity levels of beach sand samples in the black sea coast of Kocaeli (Turkey). Radiat Phys Chem 88:27–31Google Scholar
  147. 147.
    Ibraheim NM, Shawky S, Amer H (1995) Radioactivity levels in Lake Nasser sediments. Appl Radiat Isot 46(5):297–299Google Scholar
  148. 148.
    Otosaka S, Kobayashi T (2013) Sedimentation and remobilization of radiocesium in the coastal area of Ibaraki, 70 km south of the Fukushima Dai-ichi Nuclear Power Plant. Environ Monit Assess 185(7):5419–5433PubMedGoogle Scholar
  149. 149.
    Kang D-J, Chung CS, Kim SH, Kim K-R, Hong GH (1997) Distribution of 137Cs and 239,240 Pu in the surface waters of the East Sea (Sea of Japan). Mar Pollut Bull 35(7–12):305–312Google Scholar
  150. 150.
    Kim C-K, Kim C-S, Yun J-Y, Kim K-H (1997) Distribution of 3 H, 137 Cs and 239,240 Pu in the surface seawater around Korea. J Radioanal Nucl Chem 218(1):33Google Scholar
  151. 151.
    Dulanska S, Remenec B, Matel L, Galanda D, Molnar A (2011) Pre-concentration and determination of Sr-90 in radioactive wastes using solid phase extraction techniques. J Radioanal Nucl Chem 288(3):705–708.  https://doi.org/10.1007/s10967-011-1019-9 CrossRefGoogle Scholar
  152. 152.
    Ligero R, Ramos-Lerate I, Barrera M, Casas-Ruiz M (2001) Relationships between sea-bed radionuclide activities and some sedimentological variables. J Environ Radioact 57(1):7–19PubMedGoogle Scholar
  153. 153.
    Shishkina EA, Pryakhin EA, Popova IY, Osipov DI, Tikhova Y, Andreyev S, Shaposhnikova I, Egoreichenkov E, Styazhkina E, Deryabina LV (2016) Evaluation of distribution coefficients and concentration ratios of 90Sr and 137Cs in the Techa River and the Miass River. J Environ Radioact 158:148–163PubMedGoogle Scholar
  154. 154.
    Darko G, Faanu A, Akoto O, Acheampong A, Goode EJ, Gyamfi O (2015) Distribution of natural and artificial radioactivity in soils, water and tuber crops. Environ Monit Assess 187(6):339PubMedGoogle Scholar
  155. 155.
    Fallah M, Jahangiri S, Janadeleh H, Kameli MA (2019) Distribution and risk assessment of radionuclides in river sediments along the Arvand River, Iran. Microchem J 146:1090–1094.  https://doi.org/10.1016/j.microc.2019.02.028 CrossRefGoogle Scholar
  156. 156.
    Matheron G (1970) Random functions and their application in geology. In: Geostatistics. Springer, pp 79–87Google Scholar
  157. 157.
    Isaaks E, Srivastava R (1989) Applied geostatistics. Oxford University Press, New YorkGoogle Scholar
  158. 158.
    Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, New YorkGoogle Scholar
  159. 159.
    Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley Blackwell, Hoboken.  https://doi.org/10.1002/9780470725160 CrossRefGoogle Scholar
  160. 160.
    Watanabe T, Tsuchiya N, Oura Y, Ebihara M, Inoue C, Hirano N, Yamada R, Yamasaki SI, Okamoto A, Nara FW, Nunohara K (2012) Distribution of artificial radionuclides (110mAg, 129mTe, 134Cs, 137Cs) in surface soils from Miyagi Prefecture, northeast Japan, following the 2011 Fukushima Dai-ichi nuclear power plant accident. Geochem J 46(4):279–285Google Scholar
  161. 161.
    Özsoy E, Ünlüata Ü (1997) Oceanography of the Black Sea: a review of some recent results. Earth Sci Rev 42(4):231–272.  https://doi.org/10.1016/S0012-8252(97)81859-4 CrossRefGoogle Scholar
  162. 162.
    Evangeliou N, Hamburger T, Cozic A, Balkanski Y, Stohl A (2017) Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements. Atmos Chem Phys 17(14):8805–8824.  https://doi.org/10.5194/acp-17-8805-2017 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Nuclear Physics Division, Department of Physics, Faculty of ScienceFırat UniversityElazigTurkey
  2. 2.Department of Opticianry, Vocational School of Health ServiceBandirma Onyedi Eylul UniversityBandirmaTurkey
  3. 3.Department of Medical Imaging Techniques, Vocational School of Health ServiceBandirma Onyedi Eylul UniversityBandirmaTurkey

Personalised recommendations