Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 781–790 | Cite as

Optimization of bioleaching high-fluorine and low-sulfur uranium ore by response surface method

  • Zhongkui Zhou
  • Zhihui Yang
  • Zhanxue SunEmail author
  • Gongxin Chen
  • Lingling Xu
  • Qi LiaoEmail author
Article
  • 51 Downloads

Abstract

In order to optimize conditions for bioleaching of the high-fluorine and low-sulfur uranium ore by the test acidophilic consortiums, the central composite design method and response surface method were applied to study the relationships between pyrite addition, pulp density, temperature and uranium recovery rate, respectively. The results showed that the pulp density, pyrite addition and temperature had a significant impact on the uranium recovery rate. The predicted optimum uranium leaching conditions were 2.20% of pyrite addition, 7.69% of pulp density and 31.90 °C of temperature, respectively. The actual uranium leaching rate under the optimal conditions was 94.84%, which was consistent with the predicted values with the model (95.21%). The results were of great significance for a large-scaled bioleaching practice of the high-fluorine and low-sulfur uranium or low-grade uranium ore.

Keywords

High-fluorine and low-sulfur uranium ore Acidophilic consortium Bioleaching Response surface method Central composite design method 

Notes

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (No. 2012AA061504) and National Natural Science Foundation of China (No. 41772266, 41662024 and U1501231).

References

  1. 1.
    Abhilash PB, Singh AK (2013) Comparative performance of uranium bioleaching from low grade indian apatite rock in column and bioreactor. Energy Procedia 39:20–32CrossRefGoogle Scholar
  2. 2.
    Desouky OA, El-Mougith AA, Hassanien WA, Awadalla GS, Hussien SS (2016) Extraction of some strategic elements from thorium–uranium concentrate using bioproducts of Aspergillus ficuum and Pseudomonas aeruginosa. Arab J Chem 9:S795–S805CrossRefGoogle Scholar
  3. 3.
    Mishra A, Pradhan N, Kar RN, Sukla LB, Mishra BK (2009) Microbial recovery of uranium using native fungal strains. Hydrometallurgy 95:175–177CrossRefGoogle Scholar
  4. 4.
    Pal S, Pradhan D, Das T, Sukla LB, Chaudhury GR (2010) Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans. Indian J Microbiol 50:70–75CrossRefGoogle Scholar
  5. 5.
    Qiu G, Li Q, Yu R, Sun Z, Liu Y, Chen M, Yin H, Zhang Y, Liang Y, Xu L, Sun L, Liu X (2011) Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium. Biores Technol 102:4697–4702CrossRefGoogle Scholar
  6. 6.
    Anjum F, Shahid M, Akcil A (2012) Biohydrometallurgy techniques of low grade ores: a review on black shale. Hydrometallurgy 117–118:1–12CrossRefGoogle Scholar
  7. 7.
    Gilligan R, Nikoloski AN (2015) The extraction of uranium from brannerite—a literature review. Miner Eng 71:34–48CrossRefGoogle Scholar
  8. 8.
    Wang X, Li P, Liu Y, Sun Z, Chai L, Min X, Guo Y, Zheng Z, Ke Y, Liang Y (2018) Uranium bioleaching from low-grade carbonaceous-siliceous-argillaceous type uranium ore using an indigenous Acidithiobacillus ferrooxidans. J Radioanal Nuclear Chem 317:1033–1040CrossRefGoogle Scholar
  9. 9.
    Wang X, Sun Z, Liu Y, Min X, Guo Y, Li P, Zheng Z (2019) Effect of particle size on uranium bioleaching in column reactors from a low-grade uranium ore. Biores Technol 281:66–71CrossRefGoogle Scholar
  10. 10.
    Rashidi A, Roosta-Azad R, Safdari SJ (2014) Optimization of operating parameters and rate of uranium bioleaching from a low-grade ore. J Radioanal Nuclear Chem 301:341–350CrossRefGoogle Scholar
  11. 11.
    Wang X, Liu Y, Sun Z, Li J, Chai L, Min X, Guo Y, Li P, Zhou Z (2017) Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes. J Radioanal Nuclear Chem 314:251–258CrossRefGoogle Scholar
  12. 12.
    Abhilash SS, Mehta KD, Kumar V, Pandey BD, Pandey VM (2009) Dissolution of uranium from silicate-apatite ore by Acidithiobacillus ferrooxidans. Hydrometallurgy 95:70–75CrossRefGoogle Scholar
  13. 13.
    Zhou Z, Yang Z, Sun Z, Liu Y, Chen G, Liao Q, Xu L, Wang X, Li J, Zhou Y (2019) Enhanced uranium bioleaching high-fluorine and low-sulfur uranium ore by a mesophilic acidophilic bacterial consortium with pyrite. J Radioanal Nuclear Chem 321:711–722CrossRefGoogle Scholar
  14. 14.
    Li S, Zhong H, Hu Y, Zhao J, He Z, Gu G (2014) Bioleaching of a low-grade nickel–copper sulfide by mixture of four thermophiles. Biores Technol 153:300–306CrossRefGoogle Scholar
  15. 15.
    Panda S, Akcil A, Pradhan N, Deveci H (2015) Current scenario of chalcopyrite bioleaching: a review on the recent advances to its heap-leach technology. Biores Technol 196:694–706CrossRefGoogle Scholar
  16. 16.
    Umanskii AB, Klyushnikov AM (2013) Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans. J Radioanal Nuclear Chem 295:151–156CrossRefGoogle Scholar
  17. 17.
    Ma L, Li Q, Shen L, Feng X, Xiao Y, Tao J, Liang Y, Yin H, Liu X (2016) Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays. J Ind Microbiol Biotechnol 43:1441–1453CrossRefGoogle Scholar
  18. 18.
    Mo X, Li X, Wen J, Cai L (2016) Column bioleaching of fluorine-bearing uranium ore. Adv Eng Res 1:992–995Google Scholar
  19. 19.
    Peng Z, Yu R, Qiu G, Qin W, Gu G, Wang Q, Li Q, Liu X (2013) Really active form of fluorine toxicity affecting Acidithiobacillus ferrooxidans activity in bioleaching uranium. Trans Nonferrous Met Soc China 23:812–817CrossRefGoogle Scholar
  20. 20.
    Jalali F, Fakhari J, Zolfaghari A (2019) Response surface modeling for lab-scale column bioleaching of low-grade uranium ore using a new isolated strain of Acidithiobacillus Ferridurans. Hydrometallurgy 185:194–203CrossRefGoogle Scholar
  21. 21.
    Ghorbani Y, Becker M, Petersen J, Mainza AN, Franzidis J (2013) Investigation of the effect of mineralogy as rate-limiting factors in large particle leaching. Miner Eng 52:38–51CrossRefGoogle Scholar
  22. 22.
    Youlton BJ, Kinnaird JA (2013) Gangue–reagent interactions during acid leaching of uranium. Miner Eng 52:62–73CrossRefGoogle Scholar
  23. 23.
    Qiu T, Yan H, Li J, Liu Q, Ai G (2018) Response surface method for optimization of leaching of a low-grade ionic rare earth ore. Powder Technol 330:330–338CrossRefGoogle Scholar
  24. 24.
    Javed U, Farooq R, Shehzad F, Khan Z (2018) Optimization of HNO3 leaching of copper from old AMD Athlon processors using response surface methodology. J Environ Manag 211:22–27CrossRefGoogle Scholar
  25. 25.
    Moghaddam MY, Shafaei SZ, Noaparast M, Ardejani FD, Abdollahi H, Ranjbar M, Schaffie M, Manafi Z (2015) Empirical model for bio-extraction of copper from low grade ore using response surface methodology. Trans Nonferrous Met Soc China 25:4126–4143CrossRefGoogle Scholar
  26. 26.
    Zhang Z, Peng J, Srinivasakannan C, Zhang Z, Zhang L, Fernández Y, Menéndez JA (2010) Leaching zinc from spent catalyst: process optimization using response surface methodology. J Hazard Mater 176:1113–1117CrossRefGoogle Scholar
  27. 27.
    Bohlouli A, Afshar MR, Aboutalebi MR, Seyedein SH (2016) Optimization of tungsten leaching from low manganese wolframite concentrate using response surface methodology (RSM). Int J Refract Met H 61:107–114CrossRefGoogle Scholar
  28. 28.
    Tavakoli HZ, Abdollahy M, Ahmadi SJ, Darban AK (2017) Enhancing recovery of uranium column bioleaching by process optimization and kinetic modeling. Trans Nonferrous Met Soc China 27:2691–2703CrossRefGoogle Scholar
  29. 29.
    Eisapour M, Keshtkar A, Moosavian MA, Rashidi A (2013) Bioleaching of uranium in batch stirred tank reactor: process optimization using Box–Behnken design. Ann Nuclear Energy 54:245–250CrossRefGoogle Scholar
  30. 30.
    Szolucha MM, Chmielewski AG (2017) A comparison of uranium recovery from low-grade ore by bioleaching and acid leaching. Physicochem Probl Miner 53:136–149Google Scholar
  31. 31.
    Reuna S, Väisänen A (2018) Optimizing the H3PO4 leaching conditions of post-precipitated sewage sludge using response surface methodology. J Environ Manag 226:70–75CrossRefGoogle Scholar
  32. 32.
    Asadi M, Mohammadi MRT, Moosakazemi F, Esmaeili MJ, Zakeri M (2018) Development of an environmentally friendly flowsheet to produce acid grade fluorite concentrate. J Clean Prod 186:782–798CrossRefGoogle Scholar
  33. 33.
    He Z, Yang Y, Zhou S, Hu Y, Zhong H (2014) Effect of pyrite, elemental sulfur and ferrous ions on EPS production by metal sulfide bioleaching microbes. Trans Nonferrous Met Soc China 24:1171–1178CrossRefGoogle Scholar
  34. 34.
    Carrasco H, Gas P, Merino (1967) Factores que afectan a la lixiviacion de1 uranio con agua de minerals de pechblenday sulfuros. Informe JEN R, Madrid 2:1Google Scholar
  35. 35.
    Miller RP, Napier E, Wells RA (1963) Natural leaching of uranium ores-Discussions and contributions. Trans Inst Min Metall 72:217–254Google Scholar
  36. 36.
    Kinnunen PHM, Heimala S, Riekkola-Vanhanen ML, Puhakka JA (2006) Chalcopyrite concentrate leaching with biologically produced ferric sulphate. Biores Technol 97:1727–1734CrossRefGoogle Scholar
  37. 37.
    Kılıç M, Pütün E, Pütün AE (2014) Optimization of Euphorbia rigida fast pyrolysis conditions by using response surface methodology. J Anal Pyrol 110:163–171CrossRefGoogle Scholar
  38. 38.
    Abhilash PB (2013) Bioreactor leaching of uranium from a low grade Indian silicate ore. Biochem Eng J 71:111–117CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of Environmental Science and Engineering, School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.State Key Laboratory of Nuclear Resources and EnvironmentEast China University of TechnologyNanchangChina
  3. 3.Chinese National Engineering Research Center for Control & Treatment of Heavy Metal PollutionChangshaChina

Personalised recommendations