The ISOLPHARM project: ISOL-based production of radionuclides for medical applications

  • A. AndrighettoEmail author
  • M. Tosato
  • M. Ballan
  • S. Corradetti
  • F. Borgna
  • V. Di Marco
  • G. Marzaro
  • N. Realdon


Radionuclides for radiopharmaceuticals can be produced in cyclotrons or nuclear reactors. Each of these production modes has serious issues, such as high target costs, production of long-lived wastes and contaminants, expensive separation. For this reason, new methods are under consideration for the production of highly pure radionuclides. The ISOL (Isotope Separation On-Line) method is the major technique for the production of radioactive ion beams for nuclear physics applications. The SPES-ISOLPHARM project at INFN-LNL (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Legnaro) is a feasibility study for the production of medical isotopes exploiting the ISOL method. The ongoing activities concerning a recent experiment focused on 111Ag, a study performed in collaboration with Padova and Trento Universities, is presented.


Radionuclides production Electromagnetic mass separation No-carrier added 



  1. 1.
    Liu S (2008) Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radioisotopes. Adv Drug Deliv Rev 60(12):1347–1370CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nilsson T (2013) European RIB facilities—status and future. Nucl Instrum Methods Phys Res Sect B 317:194–200CrossRefGoogle Scholar
  3. 3.
    Corradetti S (2015) Thermal conductivity and emissivity measurements of uranium carbides. Nucl Instrum Methods Phys Res Sect B 360:46–53CrossRefGoogle Scholar
  4. 4.
    Manzolaro M (2010) Thermal-electric numerical simulation of a surface ion source for the production of radioactive ion beams. Nucl Instrum Methods Phys Res 623:1061–1069CrossRefGoogle Scholar
  5. 5.
    Borgna F (2017) A preliminary study for the production of high specific activity radioisotopes for nuclear medicine obtained with the isotope separation on line technique. Appl Radiat Isot 127:214–226CrossRefPubMedGoogle Scholar
  6. 6.
    Kuroda I (2012) Effective use of strontium-89 in osseous metastases. Ann Nucl Med 26:197–206CrossRefPubMedGoogle Scholar
  7. 7.
    Yeong C (2014) Therapeutic radioisotopes in nuclear medicine: current and future prospects. J Zhejiang Univ Sci 15(10):845–863CrossRefGoogle Scholar
  8. 8.
    Shi F (2014) Metastatic malignant melanoma: computed tomography-guided 125I seed implantation treatment. Melanoma Res 24(2):137–143CrossRefPubMedGoogle Scholar
  9. 9.
    Rodrigues G (2013) Low-dose rate brachytherapy for patients with low or intermediate-risk prostate cancer: a systematic review. Can Urol Assoc J 7:463–470CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wyszomirska A (2012) Iodine-131 for therapy of thyroid diseases. Phys Biol Basis Nucl Med Rev Cent East Eur 15(2):120–123Google Scholar
  11. 11.
    Borgna F (2018) Early evaluation of copper radioisotope production at ISOLPHARM. Molecules 23:2437CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Müller C (2017) Therapeutic radiometals Beyond 177Lu and 90Y: production and application of promising α-particle, β-particle, and auger electron emitters. J Nucl Med 58:91S–96SCrossRefPubMedGoogle Scholar
  13. 13.
    Müller C (2012) A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β- radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med 53(12):1951–1959CrossRefPubMedGoogle Scholar
  14. 14.
    Mastren Y (2018) Chromatographic separation of the theranostic radioisotope 111Ag from a proton irradiated thorium matrix. Anal Chim Acta 998:75–82CrossRefPubMedGoogle Scholar
  15. 15.
    Vértes A (2011) Handbook of nuclear chemistry. Springer, BerlinCrossRefGoogle Scholar
  16. 16.
    Aweda TA (2013) The use of Ag-111 as a tool for studying biological distribution of silver-based antimicrobials. MedChemComm 4:1015–1017CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu S (2001) Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. Bioconjugate Chem 12:7–34CrossRefGoogle Scholar
  18. 18.
    Brechbiel MW (2008) Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging 52(2):166–173PubMedGoogle Scholar
  19. 19.
    Gyr T (1997) A highly stable silver complex of a macrocycle derived from tetraazatetrathiacyclen. Angew Chem 36(24):2786–2788CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • A. Andrighetto
    • 1
    Email author
  • M. Tosato
    • 1
    • 2
  • M. Ballan
    • 1
  • S. Corradetti
    • 1
  • F. Borgna
    • 1
  • V. Di Marco
    • 2
  • G. Marzaro
    • 3
  • N. Realdon
    • 3
  1. 1.INFN, Laboratori Nazionali di LegnaroLegnaroItaly
  2. 2.Department of Chemical SciencesUniversity of PaduaPaduaItaly
  3. 3.Department of Pharmaceutical SciencesUniversity of PaduaPaduaItaly

Personalised recommendations