Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 677–689 | Cite as

Interactions of phosphorylated cyclohexapeptides with uranyl: insights from experiments and theoretical calculations

  • Zhi-Hui Zhang
  • Qun-Yan Wu
  • Xian-Feng Huang
  • Fu-Wan Zhai
  • Li-Yong YuanEmail author
  • Zhi-Fang Chai
  • Peter C. Burns
  • Wei-Qun ShiEmail author
Article

Abstract

Two phosphorylated cyclohexapeptides (CPs) bearing one (CP1) or two phosphates (CP2) were synthesized to explore the interactions between uranyl ions and very small cyclic peptides. According to the results of the ESI–MS and fluorescence titrations, the 1:1 uranyl-CPs complexes are the main products with the affinity constants of 7.3 × 104 and 2.0 × 105 for CP1 and CP2, respectively. Density functional theory calculations indicate phosphoryl and carboxyl groups coordinate uranyl in mono-dentate and bi-dentate fashions due to steric effects, which is consistent with the results of extended X-ray absorption fine structure spectroscopy.

Keywords

Phosphorylated cyclohexapeptides Uranyl complexes Fluorescence titration Density functional theory Extended X-ray absorption fine structure 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11775037 and 21477130). Z.H.Z. acknowledges the China Postdoctoral Science Foundation (Grant No. 2016M601136) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. We also acknowledge the crew of the 1W1B beamline of Beijing Synchrotron Radiation Facility for their constructive assistance in the course of EXAFS measurements and data analyses.

Supplementary material

10967_2019_6697_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1664 kb)

References

  1. 1.
    Baker RJ (2014) Uranium minerals and their relevance to long term storage of nuclear fuels. Coord Chem Rev 266:123–136.  https://doi.org/10.1016/j.ccr.2013.10.004 CrossRefGoogle Scholar
  2. 2.
    Burns PC, Ewing RC, Navrotsky A (2012) Nuclear fuel in a reactor accident. Science 335(6073):1184–1188.  https://doi.org/10.1126/science.1211285 CrossRefPubMedGoogle Scholar
  3. 3.
    Hon Z, Oesterreicher J, Navratil L (2015) Depleted uranium and its effects on humans. Sustainability 7(4):4063–4077.  https://doi.org/10.3390/su7044063 CrossRefGoogle Scholar
  4. 4.
    Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB (2004) Depleted and natural uranium: chemistry and toxicological effects. J Toxicol Environ Heal B 7(4):297–317.  https://doi.org/10.1080/10937400490452714 CrossRefGoogle Scholar
  5. 5.
    Ansoborlo E, Prat O, Moisy P, Den Auwer C, Guilbaud P, Carriere M, Gouget B, Duffield J, Doizi D, Vercouter T, Moulin C, Moulin V (2006) Actinide speciation in relation to biological processes. Biochimie 88(11):1605–1618.  https://doi.org/10.1016/j.biochi.2006.06.011 CrossRefPubMedGoogle Scholar
  6. 6.
    Van Horn JD, Huang H (2006) Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data. Coord Chem Rev 250(7–8):765–775.  https://doi.org/10.1016/j.ccr.2005.09.010 CrossRefGoogle Scholar
  7. 7.
    Bresson C, Ansoborlo E, Vidaud C (2011) Radionuclide speciation: a key point in the field of nuclear toxicology studies. J Anal At Spectrom 26(3):593–601.  https://doi.org/10.1039/C0JA00223B CrossRefGoogle Scholar
  8. 8.
    Sauge-Merle S, Brulfert F, Pardoux R, Solari PL, Lemaire D, Safi S, Guilbaud P, Simoni E, Merroun ML, Berthomieu C (2017) Structural analysis of uranyl complexation by the EF-hand motif of calmodulin: effect of phosphorylation. Chem Eur J 23(61):15505–15517.  https://doi.org/10.1002/chem.201703484 CrossRefPubMedGoogle Scholar
  9. 9.
    Shrivastava HY, Nair BU (2004) Fluorescence resonance energy transfer from tryptophan to a chromium(III) complex accompanied by non-specific cleavage of albumin: a step forward towards the development of a novel photoprotease. J Inorg Biochem 98(6):991–994.  https://doi.org/10.1016/j.jinorgbio.2004.02.014 CrossRefPubMedGoogle Scholar
  10. 10.
    Farkas V, Vass E, Hanssens I, Majer Z, Hollosi M (2005) Cyclic peptide models of the Ca2+-binding loop of alpha-lactalbumin. Bioorg Med Chem 13(17):5310–5320.  https://doi.org/10.1016/j.bmc.2005.06.040 CrossRefPubMedGoogle Scholar
  11. 11.
    Kowalik-Jankowska T, Jezierska J, Kuczer M (2010) Mono- and polynuclear copper(II) complexes with fragment of alloferons 1 and 2; combined potentiometric and spectroscopic studies. Dalton Trans 39(17):4117–4125.  https://doi.org/10.1039/b923491h CrossRefPubMedGoogle Scholar
  12. 12.
    Witkowska D, Bielinska S, Kamysz W, Kozlowski H (2011) Cu2+ and Ni2+ interactions with N-terminal fragments of Hpn and Hpn-like proteins from Helicobacter pylori: unusual impact of poly-Gln sequence on the complex stability. J Inorg Biochem 105(2):208–214.  https://doi.org/10.1016/j.jinorgbio.2010.11.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Ginotra YP, Ramteke SN, Srikanth R, Kulkarni PP (2012) Mass spectral studies reveal the structure of Abeta1-16-Cu2+ complex resembling ATCUN motif. Inorg Chem 51(15):7960–7962.  https://doi.org/10.1021/ic301244x CrossRefPubMedGoogle Scholar
  14. 14.
    Safi S, Creff G, Jeanson A, Qi L, Basset C, Roques J, Solari PL, Simoni E, Vidaud C, Den Auwer C (2013) Osteopontin: a uranium phosphorylated binding-site characterization. Chem -Eur J 19(34):11261–11269.  https://doi.org/10.1002/chem.201300989 CrossRefPubMedGoogle Scholar
  15. 15.
    Creff G, Safi S, Roques J, Michel H, Jeanson A, Solari PL, Basset C, Simoni E, Vidaud C, Den Auwer C (2016) Actinide(IV) deposits on bone: potential role of the osteopontin-thorium complex. Inorg Chem 55(1):29–36.  https://doi.org/10.1021/acs.inorgchem.5b02349 CrossRefPubMedGoogle Scholar
  16. 16.
    Starck M, Sisommay N, Laporte FA, Oros S, Lebrun C, Delangle P (2015) Preorganized peptide scaffolds as mimics of phosphorylated proteins binding sites with a high affinity for uranyl. Inorg Chem 54(23):11557–11562.  https://doi.org/10.1021/acs.inorgchem.5b02249 CrossRefPubMedGoogle Scholar
  17. 17.
    Huynh T-NS, Bourgeois D, Basset C, Vidaud C, Hagege A (2015) Assessment of CE-ICP/MS hyphenation for the study of uranyl/protein interactions. Electrophoresis 36(11–12):1374–1382.  https://doi.org/10.1002/elps.201400471 CrossRefPubMedGoogle Scholar
  18. 18.
    Safi S, Jeanson A, Roques J, Solari PL, Charnay-Pouget F, Den Auwer C, Creff G, Aitken DJ, Simoni E (2016) Thermodynamic and structural investigation of synthetic actinide–peptide scaffolds. Inorg Chem 55(2):877–886.  https://doi.org/10.1021/acs.inorgchem.5b02379 CrossRefPubMedGoogle Scholar
  19. 19.
    Wu Q-Y, Zhai F-W, Liu Y, Yuan L-Y, Chai Z-F, Shi W-Q (2016) Interactions between uranium(VI) and phosphopeptide: experimental and theoretical investigations. Dalton Trans 45(38):14988–14997.  https://doi.org/10.1039/c6dt03009b CrossRefPubMedGoogle Scholar
  20. 20.
    Wu Q-Y, Wang C-Z, Lan J-H, Chai Z-F, Shi W-Q (2016) Theoretical insight into the binding affinity enhancement of serine with the uranyl ion through phosphorylation. RSC Adv 6(74):69773–69781.  https://doi.org/10.1039/c6ra14906e CrossRefGoogle Scholar
  21. 21.
    Yang C-T, Han J, Gu M, Liu J, Li Y, Huang Z, Yu H-Z, Hu S, Wang X (2015) Fluorescent recognition of uranyl ions by a phosphorylated cyclic peptide. Chem Commun 51(59):11769–11772.  https://doi.org/10.1039/c5cc04112k CrossRefGoogle Scholar
  22. 22.
    Bertran-Vicente J, Serwa RA, Schumann M, Schmieder P, Krause E, Hackenberger CP (2014) Site-specifically phosphorylated lysine peptides. J Am Chem Soc 136(39):13622–13628.  https://doi.org/10.1021/ja507886s CrossRefPubMedGoogle Scholar
  23. 23.
    Stedwell CN, Patrick AL, Gulyuz K, Polfer NC (2012) Screening for phosphorylated and nonphosphorylated peptides by infrared photodissociation spectroscopy. Anal Chem 84(22):9907–9912.  https://doi.org/10.1021/ac3023058 CrossRefPubMedGoogle Scholar
  24. 24.
    Safi S, Charbonnel MC, Creff G, Jeanson A, Mostapha S, Roques J, Simoni E, Solari P, Vidaud C, Den Auwer C (2012) Actinide complexation with biomimetic phosphorylated molecules. MRS Proc 1444:199–209.  https://doi.org/10.1557/opl.2012.951 CrossRefGoogle Scholar
  25. 25.
    Starck M, Laporte FA, Oros S, Sisommay N, Gathu V, Solari PL, Creff G, Roques J, Den Auwer C, Lebrun C, Delangle P (2017) Cyclic phosphopeptides to rationalize the role of phosphoamino acids in uranyl binding to biological targets. Chem Eur J 23(22):5281–5290.  https://doi.org/10.1002/chem.201605481 CrossRefPubMedGoogle Scholar
  26. 26.
    Li B, Raff J, Barkleit A, Bernhard G, Foerstendorf H (2010) Complexation of U(VI) with highly phosphorylated protein, phosvitin a vibrational spectroscopic approach. J Inorg Biochem 104(7):718–725.  https://doi.org/10.1016/j.jinorgbio.2010.03.004 CrossRefPubMedGoogle Scholar
  27. 27.
    Qi L, Basset C, Averseng O, Quemeneur E, Hagege A, Vidaud C (2014) Characterization of UO22+ binding to osteopontin, a highly phosphorylated protein: insights into potential mechanisms of uranyl accumulation in bones. Metallomics 6(1):166–176.  https://doi.org/10.1039/c3mt00269a CrossRefPubMedGoogle Scholar
  28. 28.
    Hill TA, Shepherd NE, Diness F, Fairlie DP (2014) Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed 53(48):13020–13041.  https://doi.org/10.1002/anie.201401058 CrossRefGoogle Scholar
  29. 29.
    Lebrun C, Starck M, Gathu V, Chenavier Y, Delangle P (2014) Engineering short peptide sequences for uranyl binding. Chem Eur J 20(50):16566–16573.  https://doi.org/10.1002/chem.201404546 CrossRefPubMedGoogle Scholar
  30. 30.
    Zheng J-S, Chang H-N, Wang F-L, Liu L (2011) Fmoc synthesis of peptide thioesters without post-chain-assembly manipulation. J Am Chem Soc 133(29):11080–11083.  https://doi.org/10.1021/ja204088a CrossRefPubMedGoogle Scholar
  31. 31.
    Huang Z, Du J, Zhang J, Yu X-Q, Pu L (2012) A simple and efficient fluorescent sensor for histidine. Chem Commun 48:3412–3414CrossRefGoogle Scholar
  32. 32.
    Benesi HA, Hildebrand JH (1949) J Am Chem Soc 71:2703–2707CrossRefGoogle Scholar
  33. 33.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, WallingfordGoogle Scholar
  34. 34.
    Lee CT, Yang WT, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37(2):785–789.  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  35. 35.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38(6):3098–3100.  https://doi.org/10.1103/PhysRevA.38.3098 CrossRefGoogle Scholar
  36. 36.
    Lan J-H, Shi W-Q, Yuan L-Y, Li J, Zhao Y-L, Chai Z-F (2012) Recent advances in computational modeling and simulations on the An(III)/Ln(III) separation process. Coord Chem Rev 256(13–14):1406–1417.  https://doi.org/10.1016/j.ccr.2012.04.002 CrossRefGoogle Scholar
  37. 37.
    Wang C-Z, Lan J-H, Zhao Y-L, Chai Z-F, Wei Y-Z, Shi W-Q (2013) Density functional theory studies of UO22+ and NpO2+ complexes with carbamoylmethylphosphine oxide ligands. Inorg Chem 52(1):196–203.  https://doi.org/10.1021/ic301592f CrossRefPubMedGoogle Scholar
  38. 38.
    Dolg M, Stoll H, Preuss H (1989) Energy-adjusted abinitio pseudopotentials for the rare earth elements. J Chem Phys 90(3):1730–1734CrossRefGoogle Scholar
  39. 39.
    Küchle W, Dolg M, Stoll H, Preuss H (1994) Energy—adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J Chem Phys 100(10):7535–7542.  https://doi.org/10.1063/1.466847 CrossRefGoogle Scholar
  40. 40.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013) NBO 6.0. http://nbo6.chem.wisc.edu/
  41. 41.
    Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99(6):391–403.  https://doi.org/10.1007/s002140050353 CrossRefGoogle Scholar
  42. 42.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967.  https://doi.org/10.1002/jcc.1056 CrossRefGoogle Scholar
  43. 43.
    Van Lenthe E, Baerends EJ (2003) Optimized slater-type basis sets for the elements 1–118. J Comput Chem 24(9):1142–1156.  https://doi.org/10.1002/jcc.10255 CrossRefPubMedGoogle Scholar
  44. 44.
    Lenthe EV, Baerends EJ, Snijders JG (1993) Relativistic regular two—component hamiltonians. J Chem Phys 99(6):4597–4610.  https://doi.org/10.1063/1.466059 CrossRefGoogle Scholar
  45. 45.
    Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24(3):1083–1096CrossRefGoogle Scholar
  46. 46.
    Nalewajski RF, Mrozek J (1994) Modified valence indices from the two-particle density matrix. Int J Quantum Chem 51(4):187–200.  https://doi.org/10.1002/qua.560510403 CrossRefGoogle Scholar
  47. 47.
    Nalewajski RF, Mrozek J, Michalak A (1997) Two-electron valence indices from the Kohn–Sham orbitals. Int J Quantum Chem 61(3):589–601.  https://doi.org/10.1002/(SICI)1097-461X(1997)61:3<589::AID-QUA28>3.0.CO;2-2 CrossRefGoogle Scholar
  48. 48.
    Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A 113(38):10391–10396.  https://doi.org/10.1021/jp906341r CrossRefPubMedGoogle Scholar
  49. 49.
    Locock AJ, Burns PC (2003) The crystal structure of synthetic autunite, Ca[(UO2)(PO4)](2)(H2O)(11). Am Mineral 88(1):240–244CrossRefGoogle Scholar
  50. 50.
    Gutowski KE, Cocalia VA, Griffin ST, Bridges NJ, Dixon DA, Rogers RD (2007) Interactions of 1-methylimidazole with UO2(CH3CO2)(2) and UO2(NO3)(2): structural, spectroscopic, and theoretical evidence for imidazole binding to the uranyl ion. J Am Chem Soc 129(3):526–536.  https://doi.org/10.1021/ja064592i CrossRefPubMedGoogle Scholar
  51. 51.
    Gonzalez JD, Levonyak NS, Schneider SC, Smith MJ, Cremeens ME (2014) Using infrared spectroscopy of a nitrile labeled phenylalanine and tryptophan fluorescence to probe the alpha-MSH peptide’s side-chain interactions with a micelle model membrane. J Mol Struct 1056:7–12.  https://doi.org/10.1016/j.molstruc.2013.09.059 CrossRefGoogle Scholar
  52. 52.
    Sundararajan M, Assary RS, Hillier IH, Vaughan DJ (2011) The mechanism of the reduction of [AnO2]2 + (An = U, Np, Pu) in aqueous solution, and by Fe(ii) containing proteins and mineral surfaces, probed by DFT calculations. Dalton Trans 40(42):11156–11163.  https://doi.org/10.1039/C1DT10700C CrossRefPubMedGoogle Scholar
  53. 53.
    Jackson VE, Gutowski KE, Dixon DA (2013) Density functional theory study of the complexation of the uranyl dication with anionic phosphate ligands with and without water molecules. J Phys Chem A 117(36):8939–8957.  https://doi.org/10.1021/jp405470k CrossRefPubMedGoogle Scholar
  54. 54.
    Wu Q-Y, Wang C-Z, Lan J-H, Xiao C-L, Wang X-K, Zhao Y-L, Chai Z-F, Shi W-Q (2014) Theoretical investigation on multiple bonds in terminal actinide nitride complexes. Inorg Chem 53(18):9607–9614.  https://doi.org/10.1021/ic501006p CrossRefPubMedGoogle Scholar
  55. 55.
    Vukovic S, Hay BP, Bryantsev VS (2015) Predicting stability constants for uranyl complexes using density functional theory. Inorg Chem 54(8):3995–4001.  https://doi.org/10.1021/acs.inorgchem.5b00264 CrossRefPubMedGoogle Scholar
  56. 56.
    Wu Q-Y, Lan J-H, Wang C-Z, Xiao C-L, Zhao Y-L, Wei Y-Z, Chai Z-F, Shi W-Q (2014) Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study. J Phys Chem A 118(11):2149–2158.  https://doi.org/10.1021/jp500924a CrossRefPubMedGoogle Scholar
  57. 57.
    Kerridge A (2013) Oxidation state and covalency in f-element metallocenes (M = Ce, Th, Pu): a combined CASSCF and topological study. Dalton Trans 42(46):16428–16436.  https://doi.org/10.1039/C3DT52279B CrossRefPubMedGoogle Scholar
  58. 58.
    Mountain ARE, Kaltsoyannis N (2013) Do QTAIM metrics correlate with the strength of heavy element-ligand bonds? Dalton Trans 42(37):13477–13486.  https://doi.org/10.1039/C3DT51337H CrossRefPubMedGoogle Scholar
  59. 59.
    Wu Q-Y, Lan J-H, Wang C-Z, Zhao Y-L, Chai Z-F, Shi W-Q (2015) Terminal U ≡ E (E = N, P, As, Sb, and Bi) bonds in uranium complexes: a theoretical perspective. J Phys Chem A 119(5):922–930.  https://doi.org/10.1021/jp512950j CrossRefPubMedGoogle Scholar
  60. 60.
    Szabo Z, Toraishi T, Vallet V, Grenthe I (2006) Solution coordination chemistry of actinides: thermodynamics, structure and reaction mechanisms. Coord Chem Rev 250(7–8):784–815CrossRefGoogle Scholar
  61. 61.
    Thompson HA, Brown GE, Parks GA (1997) XAFS spectroscopic study of uranyl coordination in solids and aqueous solution. Am Mineral 82(5–6):483–496CrossRefGoogle Scholar
  62. 62.
    Kelly SD, Kemner KM, Fein JB, Fowle DA, Boyanov MI, Bunker BA, Yee N (2002) X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall interactions. Geochim Cosmochim Acta 66(22):3855–3871CrossRefGoogle Scholar
  63. 63.
    Weller MT, Light ME, Gelbrich T (2000) Structure of uranium(VI) oxide dihydrate, UO3 center dot 2H(2)O; synthetic meta-schoepite (UO2)(4)O(OH)(6)center dot 5H(2)O. Acta Crystallogr B 56:577–583CrossRefGoogle Scholar
  64. 64.
    Adelani PO, Cook ND, Babo JM, Burns PC (2014) Incorporation of Cu2+ ions into nanotubular uranyl diphosphonates. Inorg Chem 53(8):4169–4176.  https://doi.org/10.1021/ic500220d CrossRefPubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou UniversityChangzhouChina
  2. 2.Laboratory of Nuclear Energy Chemistry, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Department of Civil and Environmental Engineering and Earth Sciences, Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA

Personalised recommendations