Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 809–815 | Cite as

Purification of 99Mo and 99mTc from radioactive traces of Nb, Zr, and Y impurities: method applicable in the purification of the spent 100/99Mo–99mTc generator

  • Sankha ChattopadhyayEmail author
  • Sujata Saha Das
  • Madhusmita
  • Md. Nayer Alam
  • Sharmila Banerjee


The aim of this work was to develop a method for purification of the spent 100/99Mo–99mTc generator free from non-isotopic impurities like Nb, Y, Zr and recovery of 99mTc using a Sephadex column and MEK solvent extraction technique, respectively. This study was done by performing simulation experiment with 98Mo(n,γ)99Mo solution doped with the radiotracers of the above said non-isotopic impurities. There was respective adsorption of non-isotopic impurities of Nb, Zr and Y on Sephadex column (99.99%; n = 3) and extraction 99mTc in MEK. The extraction efficiency of pure 99mTc (radionuclidic purity: 99.99%, n = 3) from various Mo solution was 97% (n = 3).


Spent 99/100Mo/99mTc generator Purification Sephadex column chromatography MEK solvent extraction 



The authors thank the IAEA (Contract No. 22475) and the Chief Executive, BRIT for his encouragement and support in the work. The authors are grateful to the Director, VECC for his support and cyclotron operators at VECC for target irradiations.


  1. 1.
    Richards P, Tucker WD, Srivastava SC (1982) Technetium-99m: an historical perspective. Int J Appl Radiat Isot 33:793–799. J Radioannal Nucl Chem Lett 166:1–6CrossRefGoogle Scholar
  2. 2.
    Boyd RE (1982) A molybdenum-99: technetium-99m generator. Radiochim Acta 30:123–145Google Scholar
  3. 3.
    Pillai MRA, Knapp FF Jr (2012) Molybdenum-99 production from reactor irradiation of molybdenum targets: a viable strategy for enhanced availability of technetium-99m. Q J Nucl Med Mol Imaging 56(4):385–399PubMedGoogle Scholar
  4. 4.
    Chattopadhyay S, Das SS, Das MK, Goomer NC (2008) Recovery of 99mTc from Na2[99Mo]MoO4 solution obtained from reactor-produced (n, γ)99Mo using a tiny Dowex-1 column in tandem with a small alumina column. Appl Radiat Isot 66:1814–1817CrossRefGoogle Scholar
  5. 5.
    Guerin B, Tremblay S, Rodrigue S, Rousseau JA, Dumulon-Perreault V, Lecomte R, Lier JEV, Zyuzin A, Lier EJV (2010) Cyclotron production of 99mTc: an approach to the medical isotope crisis. J Nucl Med 51(4):13NPubMedGoogle Scholar
  6. 6.
    Das MK, Madhusmita Chattopadhyay S, Saha SS, Barua L et al (2016) Production and separation of 99mTc from cyclotron irradiated 100/naturalMo targets: a new automated module for separation of 99mTc from molybdenum targets. J Radioanal Nucl Chem 310(1):423–432CrossRefGoogle Scholar
  7. 7.
    Boschi A, Martini P, Pasquali M, Uccelli L (2017) Recent achievements in Tc-99m radiopharmaceutical direct production by medical cyclotrons. Drug Dev Ind Pharm 43(9):1402–1412CrossRefGoogle Scholar
  8. 8.
    Schaffer P, Bénard F, Bernstein A et al (2015) Direct Production of 99mTc via 100Mo(p,2n) on Small Medical Cyclotrons. Phys Procedia 66:383–395CrossRefGoogle Scholar
  9. 9.
    Avagyan R, Avetisyan A, Kerobyan I, Dallakyan R (2014) Photo-production of 99Mo/99mTc with electron linear accelerator beam. Nucl Med Biol 41(8):705–709CrossRefGoogle Scholar
  10. 10.
    Sabelnikov AV, Maslov OD, Molokanova LG, Gustova MV, Dmitriev SN (2006) Preparation of 99Mo and 99mTc by 100Mo(γ, n) photonuclear reaction on an electron accelerator, MT-25 microtron. Radiochemistry 48(2):191–194CrossRefGoogle Scholar
  11. 11.
    Fujiwara M, Nakaia K, Takahashi N, Hayakawa T, Shizuma T, Miyamoto S, Fan GT, Takemoto A, Yamaguchi M, Nishimura M (2017) Production of medical 99mTc isotope via photonuclear reaction. Phys Part Nuclei 48(1):124–133CrossRefGoogle Scholar
  12. 12.
    Tkac P, Vandegrift George F (2016) Recycle of enriched Mo targets for economic production of 99Mo/99Tc medical isotope without use of enriched uranium. J Radioanal Nucl Chem 308:205–212CrossRefGoogle Scholar
  13. 13.
    Martin TM, Harahsheh T, Munoz B, Hamoui Z, Clanton R, Douglas J, Brown P, Akabani G (2017) Production of 99Mo/99mTc via photoneutron reaction using natural molybdenum and enriched 100Mo: part 1, theoretical analysis. J Radioanal Nucl Chem 314(2):1051–1106CrossRefGoogle Scholar
  14. 14.
    Das MK, Madhusmita Das SS et al (2017) Separation of Mo from Nb, Zr and Y: applicability in the purification of the recovered enriched 100Mo used in the direct production of 99mTc in cyclotrons. J Radioanal Nucl Chem 311(1):643–647CrossRefGoogle Scholar
  15. 15.
    Lahiri S, Mukhopadhyay B, Das NR (1997) Simultaneous production of 89Zr and 90,91m,92mNb in α-particle activated yttrium target and their subsequent separation by HDEHP. Appl Radiat Isot 48:883–886CrossRefGoogle Scholar
  16. 16.
    Lahiri S, Mukhopadhyay B, Das NR (1997) Simultaneous production of 89Zr and 90,91m,92mNb in α-particle activated yttrium and their subsequent separation by TOA. J Radioanal Nucl Chem 218:229–231CrossRefGoogle Scholar
  17. 17.
    Dutta B, Maiti M, Lahiri S (2009) Production of 88,89Zr by proton induced activation of natY and separation by SLX and LLX. J Radioanal Nucl Chem 281:663–667CrossRefGoogle Scholar
  18. 18.
    Kandil SA, Scholten B, Saleh ZA, Youssef AM, Qaim SM, Coenen HH (2007) A comparative study on the separation of radio-zirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of 88Zr and 89Zr in proton induced reactions on yttrium. J Radioanal Nucl Chem 274:45–52CrossRefGoogle Scholar
  19. 19.
    Taghilo M, Kakavand T, Rajabifar S, Sarabadani P (2012) Cyclotron production of 89Zr: a potent radionuclide for positron emission tomography. Int J Phys Sci 7(9):1321–1325CrossRefGoogle Scholar
  20. 20.
    Bonardi M, Birattari C, Groppi F, Sabbioni E (2002) Thin-target excitation functions, cross-sections and optimized thick-target yields for natMo(p, xn)94g,95m,95g,96(m + g)Tc nuclear reactions induced by protons from threshold up to 44 MeV. No carrier added radiochemical separation and quality control. Appl Radiat Isot 57:617–635CrossRefGoogle Scholar
  21. 21.
    Maiti M, Dutta B, Lahiri S (2010) Separation of no-carrier-added 93,94,94m,95,96Tc from 7 Li induced natural Zr target by liquid–liquid extraction. Appl Radiat Isot 68:42–46CrossRefGoogle Scholar
  22. 22.
    Izumo M, Matsuoka H, Sorita T, Nagame Y, Sekine T, Hata K, Baba S (1991) Production of 95mTc with proton bombardment of 95Mo. Appl Radiat Isot 42:297–301CrossRefGoogle Scholar
  23. 23.
    Lahiri S, Mukhopadhyay B, Das NR (1997) LLX separation of carier-free, 94,95,97,103Ru, 93,94,95,96,99mTc and 95,96Nb produced in alpha-particle activated molybdenum by TOA. J Radioanal Nucl Chem 221:167–171CrossRefGoogle Scholar
  24. 24.
    Harms AV, Baker M, Jerome SM, Pearce AK, Woods MJ, Woods SA (2004) Secondary standardization of 95mTc. Appl Radiat Isot 60:553–555CrossRefGoogle Scholar
  25. 25.
    Shimada A, Ozawa M, Yabuki K et al (2014) Development of a separation method for molybdenum from zirconium, niobium, and major elements of rubble samples. J Chromatogr A 1371:163–167CrossRefGoogle Scholar
  26. 26.
    Saha Das S, Chattopadhyay S, Barua L, Alam MN, Madhusmita Kumar U (2017) Production and radiochemical separation of a potential immuno-PET imaging agent 89Zr from proton irradiated natY target. J Radioanal Nucl Chem 313(3):641–645CrossRefGoogle Scholar
  27. 27.
    Fitzsimmons JM, Mausner L (2015) Development of a production scale purification of Ge-68 from irradiated gallium metal. Radiochim Acta 103(2):117–123CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Sankha Chattopadhyay
    • 1
    Email author
  • Sujata Saha Das
    • 1
  • Madhusmita
    • 1
  • Md. Nayer Alam
    • 1
  • Sharmila Banerjee
    • 2
  1. 1.Radiopharmaceuticals Laboratory, Regional Centre, Board of Radiation and Isotope Technology (BRIT)Variable Energy Cyclotron Centre (VECC)KolkataIndia
  2. 2.Radiation Medicine CentreBARCParel, MumbaiIndia

Personalised recommendations