Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 1, pp 225–230 | Cite as

Comparative study of 110mAg(I) removal from aqueous media by humic substances

  • Sabrina A. Shaikh
  • Hemlata K. BaglaEmail author
Article
  • 30 Downloads

Abstract

In this study, humic substances—dry cowdung powder and humic acid were used for the removal of precious metal ion Ag(I) from aqueous solution. The effect of process parameters such as contact time, adsorbent dose, pH, and metal ion concentration on the adsorption process was estimated. These novel sorbents exhibited high percentage removal of Ag(I) as 95% and 77%, with a biosorption capacity of 19.0 mg g−1 and 3.88 mg g−1 for dry cowdung powder and humic acid respectively. High uptake percentages along with thermodynamic and kinetic calculations prove this process to be economical, practicable and the most eco-friendly amongst the available techniques.

Keywords

Silver Biosorption Dry cowdung powder Humic acid 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10967_2019_6691_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 37 kb)

References

  1. 1.
    Semionov A (2018) Minamata disease: review. World J Neurosci 8:178–184CrossRefGoogle Scholar
  2. 2.
    Mazumder D, Dasgupta UB (2011) Chronic arsenic toxicity: studies in West Bengal, India. Kaohsiung J Med Sci 27(9):360–370CrossRefGoogle Scholar
  3. 3.
    Zeng H, Wu J (2013) Heavy metal pollution of lakes along the mid-lower reaches of the Yangtze River in China: intensity, sources and spatial patterns. Int J Environ Res Public Health 10(3):793–807CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Quiton KG, Doma B, Futalan CM, Wan MW (2018) Removal of chromium(VI) and zinc(II) from aqueous solution using kaolin-supported bacterial biofilms of Gram-negative E. coli and Gram-positive Staphylococcus epidermidis. Sustain Environ Res 28(5):206–213CrossRefGoogle Scholar
  6. 6.
    Hefne JA, Mekhemer WK, Alandis NM, Aldayel OA, Alajyan T (2010) Removal of silver(I) from aqueous solutions by natural bentonite. JKAU Sci 22(1):155–176CrossRefGoogle Scholar
  7. 7.
    Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14CrossRefPubMedGoogle Scholar
  8. 8.
    Hanzlik J, Jehlicka J, Sebek O, Weishauptova Z, Machovic V (2004) Multi-component adsorption of Ag(I), Cd(II) and Cu(II) by natural carbonaceous materials. Water Res 38(8):2178–2184CrossRefPubMedGoogle Scholar
  9. 9.
    Jeon C (2015) Adsorption behavior of silver ions from industrial wastewater onto immobilized crab shell beads. J Ind Eng Chem 32:195–200CrossRefGoogle Scholar
  10. 10.
    Herrera I, Tiemann KJ, Armendariz V (2003) Binding of silver(I) ions by alfalfa biomass (Medicago sativa): batch pH, time, temperature, and ionic strength studies. J Hazard Subst Res 4:1–16Google Scholar
  11. 11.
    Jeon C (2017) Adsorption of silver ions from industrial wastewater using waste coffee grounds. Korean J Chem Eng 34(2):384–391CrossRefGoogle Scholar
  12. 12.
    Silva-medeiros FV, Consolin-filho N, Lima MX, Bazzo FP, Barros MA, Tavares CR (2016) Kinetics and thermodynamics studies of silver ions adsorption onto coconut shell activated carbon. Environ Technol 37(24):3087–3093CrossRefPubMedGoogle Scholar
  13. 13.
    Sarı A, Tuzen M (2013) Adsorption of silver from aqueous solution onto raw vermiculite and manganese oxide-modified vermiculite. Microporous Mesoporous Mater 170:155–163CrossRefGoogle Scholar
  14. 14.
    Cantuaria ML, Almeida Neto AF, Nascimento ES, Vieira MG (2016) Adsorption of silver from aqueous solution onto pre-treated bentonite clay: complete batch system evaluation. J Clean Prod 112:1112–1121CrossRefGoogle Scholar
  15. 15.
    Barot NS, Bagla HK (2009) Extraction of humic acid from biological matrix: dry cow dung powder. Green Chem Lett Rev 2(4):217–221CrossRefGoogle Scholar
  16. 16.
    Akinde SB, Obire O (2008) Aerobic heterotrophic bacteria and petroleum-utilizing bacteria from cow dung and poultry manure. World J Microbiol Biotechnol 24(9):1999–2002CrossRefGoogle Scholar
  17. 17.
    Barot NS, Khilnani RP, Bagla HK (2014) Biosorptive profile of synthetic and natural humiresin for the remediation of metallic water pollutants. J Radioanal Nucl Chem 302(2):951–959CrossRefGoogle Scholar
  18. 18.
    Boggs S, Livermore D, Seitz MG (1985) Humic substances in natural waters and their complexation with trace metals and radionuclides: a review. Geosci: Environ Sci. http://udspace.udel.edu/handle/19716/1567
  19. 19.
    Pettit RE (2004) Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health. A & M University, Texas. http://www.humates.com/pdf/ORGANICMATTERPettit.pdf
  20. 20.
    Bhatt ND, Bagla HK (2017) Sustainable remediation of Hg(II) from wastewater by combo humiresin- dry cow dung powder. J Environ Biotechnol Res 6(1):168–178Google Scholar
  21. 21.
    Ambe F, Ambe S, Enomoto S (2003) Handbook of nuclear chemistry: chemical applications of nuclear reactions and radiations, vol 3. Kluwer Academic Publishers, SaitamaGoogle Scholar
  22. 22.
    Lihareva N, Dimova L, Petrov O, Tzvetanova Y (2010) Ag+ sorption on natural and Na-exchanged clinoptilolite from Eastern Rhodopes. Microporous Mesoporous Mater Bulg 130(1–3):32–37CrossRefGoogle Scholar
  23. 23.
    Lu X, Yin QF, Xin Z, Zhang ZQ (2010) Powerful adsorption of silver(I) onto thiol-functionalized polysilsesquioxane microspheres. Chem Eng Sci 65(24):6471–6477CrossRefGoogle Scholar
  24. 24.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539CrossRefGoogle Scholar
  25. 25.
    Karthikeyan S, Balasubramanian R, Iyer CSP (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp for the biosorption of Cu(II) from aqueous solutions. Bioresour Technol 98:452–455CrossRefPubMedGoogle Scholar
  26. 26.
    Horsfall M, Spiff AI (2005) Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. Electron J Biotechnol 8(2):162–169CrossRefGoogle Scholar
  27. 27.
    King P, Namdeti R, Lahari BS, Yekula PK (2008) Biosorption of zinc onto Syzygium cumini L.: equilibrium and kinetic studies. Chem Eng J. 144(2):181–187CrossRefGoogle Scholar
  28. 28.
    Tee TW, Khan MA (1988) Removal of lead, cadmium and zinc by waste tea leaves. Environ Technol Lett 9(1):1223–1232CrossRefGoogle Scholar
  29. 29.
    Mishraa PC, Patel RK (2009) Removal of lead and zinc ions from water by low cost adsorbents. J Hazard Mater 168(1):31–325CrossRefGoogle Scholar
  30. 30.
    Navarro RR, Wada S, Tatsumi K (2005) Heavy metal precipitation by polycation–polyanion complex of PEI and its phosphonomethylated derivative. J Hazard Mater 123(1–3):203–209CrossRefPubMedGoogle Scholar
  31. 31.
    Morsy M, Ahmed A, Ten NM, Ibrahim H, Doaa H (2017) Heavy metals biosorption from aqueous solution by endophytic Drechslera hawaiiensis of Morus alba L. derived from Heavy Metals Habitats. Mycobiology 45(2):73–83CrossRefGoogle Scholar
  32. 32.
    Nightingale ER (1959) Phenomenological theory of ion solvation: effective radii of hydrated ions. J Phys Chem 63(9):1381–1387CrossRefGoogle Scholar
  33. 33.
    Bakouri HE, Usero J, Morillo J, Ouassini A (2009) Adsorptive features of acid-treated olive stones for drin pesticides: equilibrium, kinetic and thermodynamic modeling studies. Bioresour Technol 100(18):4147–4155CrossRefPubMedGoogle Scholar
  34. 34.
    Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetenskapsakademiens, Handl. vol 24, pp 1–39Google Scholar
  35. 35.
    Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRefGoogle Scholar
  36. 36.
    Ho YS, Mckay G (2000) The kinetics of sorption of divalent metal ions onto Sphagnum moss peat. Water Res 34(3):735–742CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Nuclear and RadiochemistryKishinchand Chellaram CollegeMumbaiIndia

Personalised recommendations