Journal of Radioanalytical and Nuclear Chemistry

, Volume 322, Issue 2, pp 879–890 | Cite as

Importance of site specific data on carbon content in environmental matrices for accurate determination of carbon-14 specific activity

  • Renita Shiny D’Souza
  • S. Rashmi Nayak
  • S. Bharath
  • M. P. Mohan
  • B. N. Dileep
  • P. M. Ravi
  • N. KarunakaraEmail author


Carbon content (%) measurement for determination of 14C specific activity (Bq kg−1C) in environmental matrices based on thermal oxidation of the sample using pyrolyser is discussed. The carbon content in biota samples (N = 574) of the tropical region were in the range 30–45%, 28–47%, 31–46%, 32–45%, 43–49%, and 37–50% with corresponding mean values of 38 ± 3.1%, 38 ± 4.4%, 41 ± 3.1%, 41 ± 3.7%, 46 ± 1.5%, and 44 ± 5.1% respectively for wild plant leaves, vegetables, fruits, cereals, wood, and fish samples. The present study shows that carbon content within the species and category (fruit, leaves, vegetables, etc.) of the sample may differ up to ~ 20% points.


Radiocarbon (14C) RADDEC pyrolyser Quantulus 1220 liquid scintillation spectrometer (LSS) Carbon content (%) 



The authors would like to thank the Board of Research in Nuclear Science (BRNS), DAE, Govt. of India, for funding the research program (BRNS sanction no. 2013/36/22-BRNS/3341 dated 18.03.2014). The authors would like to thank Shri. H. S. Kushwaha, Outstanding Scientist, BRNS, Mumbai for his comments, suggestions, and guidance.


  1. 1.
    Libby WF (1945) Atmospheric helium three and radiocarbon from cosmic radiation. Phys Rev 69:671–672CrossRefGoogle Scholar
  2. 2.
    Mazeika J, Petrosius R, Pukiene R (2007) Carbon-14 in tree rings in the vicinity of Ignalina Nuclear Power plant, Lithuania. GEOCHRONOMETRIA 28:31–37. CrossRefGoogle Scholar
  3. 3.
    Mazeika J, Petrosius R, Pukiene R (2008) Carbon-14 in tree rings and other terrestrial samples in the vicinity of Ignalina Nuclear Power Plant Lithuania. J Environ Radioact 99:238–247. CrossRefPubMedGoogle Scholar
  4. 4.
    IAEA (2004) Management of waste containing tritium and carbon-14. Report IAEA 421, ViennaGoogle Scholar
  5. 5.
    Saxén R, Hanste U-M (2009) An oxidizer/lsc method for the determination of samples. Adv Liq Scintill Spectrom 279–285Google Scholar
  6. 6.
    Sohn W, Kang D-W, Kim W-S (2003) An estimate of carbon-14 inventory at Wolsong Nuclear Power Plant in the Republic of Korea. J Nucl Sci Technol 40:604–613CrossRefGoogle Scholar
  7. 7.
    Stenström K (1995) New applications of 14C measurements at the Lund AMS facility. Doctoral dissertation, Lund University, SwedenGoogle Scholar
  8. 8.
    Dias CM, Telles EC, Santos RV, Stenström K, Nícoli IG, Corrêa RS, Skog G (2009) 14C, δ 13C and total C content in soils around a Brazilian PWR nuclear power plant. J Environ Radioact 100:348–353CrossRefGoogle Scholar
  9. 9.
    Moore JB, Noakes JE, Spaulding JD (1993) Environmental monitoring of 14C in milk and agricultural samples. Radiocarbon 447–453Google Scholar
  10. 10.
    Culp R, Cherkinsky A, Prasad RGV (2014) Comparison of radiocarbon techniques for the assessment of biobase content in fuels. Appl Radiat Isot 93:106–109CrossRefGoogle Scholar
  11. 11.
    Chuang T-H, Tsai T-L, Guo G-L, Chang R-S (2015) A simple sample preparation system for determination of 14C in environmental samples and radwastes using liquid scintillation counting. J Radioanal Nucl Chem 303:1239–1243CrossRefGoogle Scholar
  12. 12.
    Oh J-S, Warwick PE, Croudace IW, Lee S-H (2014) Rapid determination of tritium and carbon-14 in urine samples using a combustion technique. J Radioanal Nucl Chem 299:187–191CrossRefGoogle Scholar
  13. 13.
    D’Souza RS, Nayak RS, Kamath SS, Mohan MP, Dileep BN, Narayana B, Ravi PM, Karunakara N (2017a) Performance evaluation of sample oxidation system for carbon-14 determination in environmental matrices. In: Proceedings of the national Conference on radiation physics (NCRP-2017), pp 8–11Google Scholar
  14. 14.
    Ma S, He F, Tian D, Zou D, Yan Z, Yang Y, Zhu T, Huang K, Shen H, Fang J (2018) Variations and determination of carbon content in plants: a global synthesis. Biogeosciences 15:693–702. CrossRefGoogle Scholar
  15. 15.
    Sylvie R-D, Gilles G, Franҫoise S, Marc F (2006) Distribution of carbon 14 in the terrestrial environment close to French nuclear power plant. J Environ Radioact 87:246–259CrossRefGoogle Scholar
  16. 16.
    IRNS (2010) Carbon-14 and the environment. Radionuclide fact sheetGoogle Scholar
  17. 17.
    Nayak RS, D’Souza RS, Kamath SS, Mohan MP, Bharath S, Shetty Trilochana, Sudeep K, Dileep BN, Narayana B, Ravi PM, Karunakara N (2019) Organically bound tritium: optimization of measurments in environmental matrices by combustion method and liquid scintillation spectrometry. J Radioanal Nucl Chem 319:917–926CrossRefGoogle Scholar
  18. 18.
    D’Souza RS, Nayak RS, Kamath SS, Mohan MP, Dileep BN, Narayana B, Ravi PM, Karunakara N (2017b) Optimization of sample size for the estimation of 14C in environmental matrices using pyrolyser. In: Proceedings of the 13th Biennial DAE-BRNS Symposium on Nuclear and Radiochemistry (NUCAR-2017). 6–7Google Scholar
  19. 19.
    Muhammad A, Lloyd WR, Rashida A, Mian NR (2013) Application and opportunities of pulses in food system: a review. Crit Rev Food Sci Nutr 53:1168–1179CrossRefGoogle Scholar
  20. 20.
  21. 21. General properties of fruits and vegetables; chemical composition and nutritional aspects; structural features. Accessed 4 June 2019
  22. 22.
    Negi JDS, Manhas RK, Chauhan PS (2003) Carbon allocation in different components of some tree species of India: a new approach for carbon estimation. Curr Sci 85:1528–1531Google Scholar
  23. 23.
    Kutschera W (2013) Applications of accelerator mass spectrometry. Int J Mass Spectrom 349–350:203–218. CrossRefGoogle Scholar
  24. 24.
    Ognibene TJ, Bench G, Brown TA, Vogel JS (2004) The LLNL accelerator mass spectrometry for biochemical 14C-measurements. Nucl Instrum Methods Phys Res B 223–224:12–15CrossRefGoogle Scholar
  25. 25.
    Wacker L, Němec M, Bourquin J (2010) A revolutionary graphitisation system: fully automated, compact and simple. Nucl Instrum Methods Phys Res B 268:931–934CrossRefGoogle Scholar
  26. 26.
    IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Report IAEA 472, ViennaGoogle Scholar
  27. 27.
    Lindsay DJ (2003) Carbon and nitrogen contents of mesopelagic organisms: results from Sagami Bay Japan. J Deep Sea Res 22:1–13Google Scholar
  28. 28.
    Thomas SC, Martin AR (2012) Carbon content of tree tissues: a synthesis. Forests 3(2):332–352CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Renita Shiny D’Souza
    • 1
  • S. Rashmi Nayak
    • 1
  • S. Bharath
    • 1
  • M. P. Mohan
    • 1
  • B. N. Dileep
    • 2
  • P. M. Ravi
    • 1
    • 3
  • N. Karunakara
    • 1
    Email author
  1. 1.Centre for Advanced Research in Environmental Radioactivity (CARER)Mangalore UniversityMangalagangothriIndia
  2. 2.Environmental Survey LaboratoryKaiga Generating StationKaigaIndia
  3. 3.Formerly with Health Physics DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations