Journal of Radioanalytical and Nuclear Chemistry

, Volume 321, Issue 3, pp 1073–1080 | Cite as

Analysis of sub-picogram quantities of 238Pu by thermal ionization mass spectrometry

  • Joel MaassenEmail author
  • Jeremy D. Inglis
  • Allison Wende
  • Theresa M. Kayzar-Boggs
  • Robert E. Steiner
  • Azim Kara


A multiple ion-counting total evaporation technique has been developed for precise analysis of sub-picogram (pg) quantities of 238Pu by thermal ionization mass spectrometry (TIMS). A resin bead loading procedure was tailored to minimize uranium (U) contamination during loading. This loading technique, coupled with a mass spectrometry protocol that minimizes U ionization and removal of bulk U with ion exchange chromatography, allows for single pg-sized aliquots of plutonium (Pu) to be measured without interference from 238U. This technique has the potential to provide complete isotopic characterization of trace amounts of Pu by TIMS, without the need for alpha spectrometry.


Plutonium Resin bead loading technique Multiple ion counter Total evaporation TIMS Trace-level 



The authors thank Robert Guest, IsotopX Ltd., for discussions on the optimization of the Phoenix for MICTE analyses, and James Colgan for discussions on the Saha–Langmuir equation. Los Alamos National Laboratory is operated by Triad National Security, LLC for the U.S. Department of Energy’s NNSA under contract number 89233218CNA000001. This publication is LA-UR-19-24192.


  1. 1.
    Suslova K, Sokolova A, Khokhryakov V, Miller S (2012) 238Pu accumulation, tissue distribution, and excretion in Mayak workers after exposure to plutonium aerosols. Health Phys 102:243–250CrossRefGoogle Scholar
  2. 2.
    Wallenius M, Peerani P, Koch L (2000) Origin determination of plutonium material in nuclear forensics. J Radioanal Nucl Chem 246:317–321CrossRefGoogle Scholar
  3. 3.
    Vajda N, Kim C-K (2010) Determination of Pu isotopes by alpha spectrometry: a review of analytical methodology. J Radioanal Nucl Chem 283:203–223CrossRefGoogle Scholar
  4. 4.
    Esaka F, Yasuda K, Suzuki D, Miyamoto Y, Magara M (2017) Analysis of plutonium isotope ratios including 238Pu/239Pu in individual U-Pu mixed oxide particles by means of combination of alpha spectrometry and ICP-MS. Talanta 165:122–127CrossRefGoogle Scholar
  5. 5.
    Macsik Z, Shinonaga T (2010) Accuracy and precision of 238Pu determination at fg level by alpha spectrometry using 239Pu and 240Pu amount analyzed by ICP-MS. Appl Radiat Isot 68:2147–2152CrossRefGoogle Scholar
  6. 6.
    Isselhardt BH, Prussin SG, Savina MR, Willingham DG, Knight KB, Hutcheon ID (2016) Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry. J Anal At Spectrom 31:666–678CrossRefGoogle Scholar
  7. 7.
    Kunz P, Huber G, Passler G, Trautmann N (2004) Efficient three-step, two-color of plutonium using a resonance enhanced 2-photon transition into an autoionizing state. Eur Phys J D 29:183–188CrossRefGoogle Scholar
  8. 8.
    Schonberg P, Mokry C, Runke J, Schonenbach D, Stobener N, Thorle-Pospiech P, Trautmann N, Reich T (2017) Application of resonance ionization mass spectrometry for ultratrace analysis of technetium. Anal Chem 89:9077–9082CrossRefGoogle Scholar
  9. 9.
    Raeder S, Hakimi A, Stobener N, Trautmann N, Wendt K (2012) Detection of plutonium isotopes at lowest quantities using in-source resonance ionization mass spectrometry. Anal Bioanal Chem 404:2163–2172CrossRefGoogle Scholar
  10. 10.
    Noto T, Tomita H, Furuta Y, Takamatsu T, Kawarabayashi J, Iguchi T, Wendt K (2016) Development of a sequential data correction method for isotope ratio analysis by resonance ionization mass spectrometry. J Nucl Sci Technol 53:289–294CrossRefGoogle Scholar
  11. 11.
    Jakopic R, Richter S, Kuhn H, Benedik L, Pihlar B, Aregbe Y (2009) Isotope ratio measurements of pg-size plutonium samples using TIMS in combination with “multiple ion counting” and filament carburization. Int J Mass Spectrom 279:87–92CrossRefGoogle Scholar
  12. 12.
    Inglis J, Maassen J, Kara A, Steiner R, Kinman W, Lopez D (2017) A multiple ion counter total evaporation (MICTE) method for precise analysis of plutonium by thermal ionization mass spectrometry. J Radioanal Nucl Chem 312:663–673CrossRefGoogle Scholar
  13. 13.
    Mannion J, Shick C Jr, Fugate G, Powell B, Husson S (2018) Anion-exchange polymer filament coating for ultra-trace isotopic analysis of plutonium by thermal ionization mass spectrometry. Talanta 189:502–508CrossRefGoogle Scholar
  14. 14.
    Li C, Guo J, Chu Z, Feng L, Wang X (2015) Direct high-precision measurements of the 87Sr/86Sr isotope ratio in natural water without chemical separation using thermal ionization mass spectrometry equipped with 1012 Ω resistors. Anal Chem 87:7426–7432CrossRefGoogle Scholar
  15. 15.
    Dresser M (1968) The Saha–Langmuir equation and its application. J Appl Phys 39:338CrossRefGoogle Scholar
  16. 16.
    Coste A, Avril R, Blancard P, Chatelet J, Lambert D, Legre J, Liberman S, Pinard J (1982) New spectroscopic data on high-lying excited levels of atomic uranium. J Opt Soc Am 72:103–109CrossRefGoogle Scholar
  17. 17.
    Worden E, Carlson L, Johnson S, Paisner J, Solarz R (1993) Ionization potential of neutral atomic plutonium determined by laser spectroscopy. J Opt Soc Am B 10:1998–2005CrossRefGoogle Scholar
  18. 18.
    Pallmer P Jr, Gordon R (1980) The work function of carburized rhenium. J Appl Phys 51:3776–3779CrossRefGoogle Scholar
  19. 19.
    Saito N (1984) Selected data on ion exchange separations in radioanalytical chemistry. Pure Appl Chem 56:523–539CrossRefGoogle Scholar
  20. 20.
    Walker R, Carter J, Smith D (1981) A bulk resin bead procedure to obtain uranium and plutonium from radioactive solutions for mass spectrometric analysis. Anal Lett 14:1603–1612CrossRefGoogle Scholar
  21. 21.
    IAEA (1986) Decay data of the transactinium nuclides. Technical reports series No. 261Google Scholar
  22. 22.
    Lee C, Suzuki D, Esaka F, Magara M, Song K (2015) Ultra-trace analysis of plutonium by thermal ionization mass spectrometry with a continuous heating technique without chemical separation. Talanta 141:92–96CrossRefGoogle Scholar
  23. 23.
    Mannion J, Shick C Jr, Fugate G, Wellons M, Powell B, Husson S (2017) Rhenium filament oxidation: effect on TIMS performance and the roles of carburization and humidity. Talanta 168:183–187CrossRefGoogle Scholar
  24. 24.
    Lee S-H, Rosa J, Gastaud J, Povinec P (2004) The development of sequential separation methods for the analysis of actinides in sediments and biological materials using anion-exchange resins and extraction chromatography. J Radioanl Nucl Chem. 263:419–425CrossRefGoogle Scholar
  25. 25.
    Kawano H, Itaska S, Ohnishi S, Hidaka Y (1986) Temperature dependence of the effective work functions for thermal positive-ionic and electronic emissions from a polycrystalline rhenium surface in a high vacuum. Int J Mass Spectrom Ion Processes 70:195–201CrossRefGoogle Scholar
  26. 26.
    Isselhardt B, Savina M, Kucher A, Gates S, Knight K, Hutcheon I (2016) Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS. J Radioanal Nucl Chem 307:2487–2494CrossRefGoogle Scholar
  27. 27.
    Aggarwal S, Devanathan A (2005) Novel approach for the determination of Pu-238 by thermal ionization mass spectrometry (TIMS) using interfering element correction methodology. Int J Mass Spectrom 241:83–88CrossRefGoogle Scholar
  28. 28.
    Tiong L, Ho M, Pong B, Webster R (2017) A rapid method for quantifying 238Pu in the presence of natural 238U via quadrupole inductively couple mass spectrometry (ICP-MS) and utilizing a resin-based extraction procedure. J Radioanal Nucl Chem 314:1347–1351CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Nuclear and Radiochemistry Group, Chemistry DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations