Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 321, Issue 3, pp 885–893 | Cite as

Response overshoot: a challenge for the application of polymer gel dosimeters

  • Seyed Mohammad Mahdi AbtahiEmail author
Article
  • 17 Downloads

Abstract

In this research response overshoots of the half irradiated PAGAT polymer gel dosimeter at variations post irradiation times were traced out. Results showed that 5 h after irradiation the measured dose by polymer gel dosimeter in boundary region are compatible with delivered dose. However, more elapsed time post irradiation caused misevaluation of dose. It was observed that response overshoot caused a maximum error of 28% in dose evaluation. It was concluded that more care is necessary when a high gradient dose distribution is evaluated by means of a polymer gel dosimeter.

Keywords

Polymer gel dosimeter PAGAT Response overshoot Dose distributions integrity MRI 

Notes

Acknowledgements

This study was supported as a research project under Grant Number IKIU-10372 by Imam Khomeini International University, Qazvin, Iran. The author acknowledge the radiology and radiotherapy departments of Shohadae-Tajrish hospital, specially Mr. Masud Heidari and Mr. Ali Jabbari, for their kind efforts in gel dosimeters imaging and irradiation.

References

  1. 1.
    Maryanski MJ, Gore JC, Kennan RP, Schulz RJ (1993) NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging 11:253–258CrossRefGoogle Scholar
  2. 2.
    Yao C-H, Chang T-H, Tsai M-J, Lai Y-C, Chen Y-A, Chang Y-J, Chen C-H (2017) Dose verification of volumetric modulation arc therapy by using a NIPAM gel dosimeter combined with a parallel-beam optical computed tomography scanner. J Radioanal Nucl Chem 311(2):1277–1286CrossRefGoogle Scholar
  3. 3.
    Kairn T, Taylor ML, Crowe SB, Dunn L, Franich RD, Kenny J, Knight RT, Trapp JV (2012) Monte Carlo verification of gel dosimetry measurements for stereotactic radiotherapy. Phys Med Biol 57(11):3359CrossRefGoogle Scholar
  4. 4.
    Farhood B, Geraily G, Abtahi SMM (2019) A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Appl Radiat Isot 143:47–59CrossRefGoogle Scholar
  5. 5.
    Zeidan OA, Sriprisan SI, Lopatiuk-Tirpak O, Kupelian PA, Meeks SL, Anderson MD, Hsi WC, Li Z, Palta JR, Maryanski MJ (2010) Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy. Med Phys 37(5):2145–2152CrossRefGoogle Scholar
  6. 6.
    Ramm U, Weber U, Bock M, Krämer M, Bankamp A, Damrau M, Thilmann C, Böttcher HD, Schad LR, Kraft G (2000) Three-dimensional BANGTM gel dosimetry in conformal carbon ion radiotherapy. Phys Med Biol 45:N95–N102CrossRefGoogle Scholar
  7. 7.
    da Silveira MC, Sampaio FGA, Petchevist PCD, de Oliveira AL, de Almeida A (2011) Mycosis Fungoides electron beam absorbed dose distribution using Fricke xylenol gel dosimetry. Nucl Instrum Method B 269:3137–3140CrossRefGoogle Scholar
  8. 8.
    Abtahi SM, Zahmatkesh MH, Khalafi H (2016) Investigation of an improved MAA-based polymer gel for thermal neutron dosimetry. J Radioanal Nucl Chem 307(2):855–868CrossRefGoogle Scholar
  9. 9.
    Kargar Shaker Langaroodi R, Abtahi SMM, Akbari ME (2019) Investigation of the radiological properties of various phantoms for their application in low energy X-rays dosimetry. Radiat Phys Chem 157:33–39CrossRefGoogle Scholar
  10. 10.
    Sato R, Almeida AD, Moreira MV (2009) 137Cs source dose distribution using the Fricke Xylenol Gel dosimetry. Nucl Instrum Method B 267:842–845CrossRefGoogle Scholar
  11. 11.
    De Deene Y, De Wagter C, Van Duyse B, Derycke S, De Neve W, Achten E (1998) Three-dimensional dosimetry using polymer gel and magnetic resonance imaging applied to the verification of conformal radiation therapy in head-and-neck cancer. Radiother Oncol 48:283–291CrossRefGoogle Scholar
  12. 12.
    Abtahi SM, Aghamiri SMR, Khalafi H (2014) Optical and MRI investigations of an optimized acrylamide-based polymer gel dosimeter. J Radioanal Nucl Chem 300:287–301CrossRefGoogle Scholar
  13. 13.
    Kim S-Y, Baek H-M, Lee J-H, Kim D-H, Jung J-Y, Lee D-W, Min J-W, Park J-Y, Lee S-R, Choe B-Y (2014) Reduced dose uncertainty in MRI-based polymer gel dosimetry using parallel RF transmission with multiple RF sources. J Radioanal Nucl Chem 302(1):533–541CrossRefGoogle Scholar
  14. 14.
    Hilts M, Audet C, Duzenli C, Jirasek A (2000) Polymer gel dosimetry using x-ray computed tomography: a feasibility study. Phys Med Biol 45:2559–2571CrossRefGoogle Scholar
  15. 15.
    Mather ML, Whittaker AK, Baldock C (2002) Ultrasound evaluation of polymer gel dosimeters. Phys Med Biol 47:1449–1458CrossRefGoogle Scholar
  16. 16.
    Baldock C, Rintoul L, Keevil SF, Pope JM, George GA (1998) Fourier transform Raman spectroscopy of polyacrylamide gels(PAGs) for radiation dosimetry. Phys Med Biol 43:3617–3627CrossRefGoogle Scholar
  17. 17.
    De Deene Y, Venning A, Hurley C, Healy BJ, Baldock C (2002) Dose-response stability and integrity of the dose distribution of various polymer gel dosimeters. Phys Med Biol 47(14):2459–2470CrossRefGoogle Scholar
  18. 18.
    Fong PM, Keil DC, Does MD, Gore JC (2001) Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol 46(12):3105–3113CrossRefGoogle Scholar
  19. 19.
    Deene YD, Vergote K, Claeys C, De Wagter C (2006) The fundamental radiation propertiesof normoxic polymer gel dosimeters: a comparison between a methacrylic acid based gel and acrylamide based gels. Phys Med Biol 51:653–673CrossRefGoogle Scholar
  20. 20.
    Sellakumar P, Samuel EJJ (2010) Study on energy dependence of PAGAT polymer gel dosimeter evaluated using X-ray CT. Radiat Meas 45:92–97CrossRefGoogle Scholar
  21. 21.
    Venning AJ, Hill B, Brindha S, Healy BJ, Baldock C (2005) Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging. Phys Med Biol 50:3875–3888CrossRefGoogle Scholar
  22. 22.
    Senden RJ, Jean PD, McAuley KB, Schreiner LJ (2006) Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose–response using different monomers. Phys Med Biol 51:3301–3314CrossRefGoogle Scholar
  23. 23.
    Deene YD, Pittomvils G, Visalatchi S (2007) The influence of cooling rate on the accuracy of normoxic polymer gel dosimeters. Phys Med Biol 52(10):2719–2728CrossRefGoogle Scholar
  24. 24.
    International Atomic Energy Agency (IAEA) (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Technical report series no. 398 (Vienna: IAEA)Google Scholar
  25. 25.
    Deene YD, Wagter CD (2001) Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: III. Effects of temperature drift during scanning. Phys Med Biol 46:2697–2711CrossRefGoogle Scholar
  26. 26.
    De Deene Y, Van de Walle R, Achten E, De Wagter C (1998) Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Signal Process 70:85–101CrossRefGoogle Scholar
  27. 27.
    Baldock C, Lepage M, Back SA, Murry PJ, Jayasekera PM, Porter D, Kron T (2001) Dose resolution in radiotherapy gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys Med Biol 46:449–460CrossRefGoogle Scholar
  28. 28.
    Baldock C, Deene YD, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ (2010) Polymer gel dosimetry. Phys Med Biol 55:R1–R63CrossRefGoogle Scholar
  29. 29.
    Deene YD (2004) Essential characteristics of polymer gel dosimeters. J Phys Conf Ser 3:34–57CrossRefGoogle Scholar
  30. 30.
    Deene YD, Hanselaer P, Wagter CD, Achten E, Neve WD (2000) An investigation of the chemical stability of a monomer/polymer gel dosimeter. Phys Med Biol 45:859–878CrossRefGoogle Scholar
  31. 31.
    Vergote K, Deene YD, Bussche EV, Wagter CD (2004) On the relation between the spatial dose integrity and the temporal instability of polymer gel dosimeters. Phys Med Biol 49:4507–4522CrossRefGoogle Scholar
  32. 32.
    Chang YJ, Chen CH, Hsieh BT (2014) Characterization of long-term dose stability of N-isopropylacrylamide polymer gel dosimetry. J Radioanal Nucl Chem 301(3):765–780CrossRefGoogle Scholar
  33. 33.
    Schreiner LJ (2006) Dosimetry in modern radiation therapy: limitations and needs. In: Preliminary proceeding of DOSGEL 2006—4th international conference on radiotherapy gel dosimetry. University of Sherbrooke, Sherbrooke (Quebec), CanadaGoogle Scholar
  34. 34.
    Ibbott GS (2006) Clinical applications of gel dosimeteres. In: Preliminary proceeding of DOSGEL 2006—4th international conference on radiotherapy gel dosimetry. University of Sherbrook, Sherbrook (Quebec), CanadaGoogle Scholar
  35. 35.
    Ertl A, Berg A, Zehetmayer M, Frigo P (2000) High-resolution dose profile studies based on MR Imaging with polymer BANGTM gels in stereotactic radiation techniques. Magn Reson Imaging 18:343–349CrossRefGoogle Scholar
  36. 36.
    Chang Y-J, Hsieh B-T, Liang J-A (2011) A systematic approach to determine optimal composition of gel used in radiation therapy. Nucl Instrum Method A 652:783–785CrossRefGoogle Scholar
  37. 37.
    Lepage M, Whittaker AK, Rintoul L, Back SA, Baldock C (2001) The relationship between radiation-induced chemical processes and transverse relaxation times in polymer gel dosimeters. Phys Med Biol 46:1061–1074CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Physics DepartmentImam Khomeini International UniversityQazvinIran

Personalised recommendations