Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 321, Issue 3, pp 841–849 | Cite as

A method for the mg scale separation of curium(III) from americium(III) by HPLC using a SCX column

  • Nidhu lal Banik
  • Klaus Lützenkirchen
  • Rikard MalmbeckEmail author
  • Adrian Nichol
Article

Abstract

A method intended for the mg scale separation of curium (Cm) from americium (Am) and plutonium (Pu) based on high pressure liquid chromatography using a strong cation exchange column has been investigated. Reproducible separations were achieved on the Luna SCX (Phenomenex) column with α-hydroxymethylbutyric acid (α-HMBA) as eluant. The separation performance was investigated on the tracer level varying the pH, concentration, temperature and flow rate of the eluting solution. It was found that 0.1 M α-HMBA at a pH of 3.7 using a flow-rate of 1 mL/min, gave enough peak resolution for an efficient and reproducible separation of Cm from Am. Separations with gadolinium loading were investigated to scale up the purification of Cm from tracer level to mg scale. Baseline chromatographic separations were demonstrated in column loadings of up to 20% of full column capacity, corresponding to 2.5 mg of Cm.

Keywords

Chromatography HPLC Cm Am alpha-Hydroxymethylbutyric acid Separation 

Notes

Acknowledgements

We acknowledge Prof. Dr. Roberto Caicuffo, European Commission, Joint Research Centre—JRC, Directorate G, Karlsruhe, Germany for scientific discussions and his continuous support throughout this work.

References

  1. 1.
    Ensslin N, Harker WC, Krick MS, Langner DG, Pickrel MML, Stewart JE (1998) Application guide to neutron multiplicity counting. LA-13422-M, Los Alamos National Laboratory ReportGoogle Scholar
  2. 2.
    Rinard PM, Menlove HO (1997) Applications of curium measurements for safeguarding at large-scale reprocessing plants. LA-UR-97-1449, Los Alamos National Laboratory ReportGoogle Scholar
  3. 3.
    Nash KL, Madic C, Mathur JN, Lacquement J (2006) In Chapt. 12, Actinide separation science and technology. In: Morss LR, Edelstein NM, Fuger J, Katz JJ (eds) The chemistry of the actinide and transactinide elements, 3rd edn. Springer, DordrechtGoogle Scholar
  4. 4.
    Modolo G, Kluxen P, Geist A (2010) Demonstration of the LUCA process for the separation of americium(III) from curium(III), californium(III), and lanthanides(III) in acidic solution using a synergistic mixture of bis(chlorophenyl)dithiophosphinic acid and tris(2-ethylhexyl)phosphate. Radiochim Acta 98:193–201CrossRefGoogle Scholar
  5. 5.
    Pimpl M, Hiller J, Schüttelkopf H (1980) Trennung von Plutonium, Americium und Curium auf einer Kationenaustauschersäule mit Hochdruckflüssigkeitschromatographie, (Hauptabteilung Sicherheit Kernforschungszentrum, KfK 3076 BGoogle Scholar
  6. 6.
    Van Hoecke K, Bussé J, Gysemans M, Le Adriaensen, Dobney A, Cardinaels T (2017) Isolation of lanthanides from spent nuclear fuel by means of high performance ion chromatography (HPIC) prior to mass spectrometric analysis. J Radioanal Nucl Chem 314(3):1727–1739CrossRefGoogle Scholar
  7. 7.
    Chartier F, Aubert M, Pilier M (1999) Determination of Am and Cm in spent nuclear fuels by isotope dilution inductively coupled plasma mass spectrometry and isotope dilution thermal ionisation mass spectrometry after separation by high-performance liquid chromatography. Fresenius J Anal Chem 364:320–327CrossRefGoogle Scholar
  8. 8.
    Röllin S, Kopatjtic Z, Wernli B, Magyar B (1996) Determination of lanthanides and actinides in uranium materials by high-performance liquid chromatography with inductively coupled plasma mass spectrometric detection. J Chromatogr A 739(1–2):139–149CrossRefGoogle Scholar
  9. 9.
    Billon A (1997) Analytical separation of americium and curium using high performance liquid chromatography. J Radioanal Chem 51:297–305CrossRefGoogle Scholar
  10. 10.
    Koyama S, Ozawa M, Suzuki T, Fujii Y (2006) Development of a multi-functional reprocessing process based on ion-exchange method by using tertiary pyridine-type resin. J Nucl Sci Technol 43(6):681–689CrossRefGoogle Scholar
  11. 11.
    Warwick PE, Croudace W, Carpenter R (1996) Review of analytical techniques for the determination of americium-241 in soils and sediments. Appl Radiat lsot 47:627–642CrossRefGoogle Scholar
  12. 12.
    Kumar P, Paul S, Jaison PG, Telmore VM, Alamelu D, Aggarwal SK (2014) HPLC method for determination of Th, U and Pu in irradiated (Th, Pu)O2 using mandelic acid as an eluent. Radiochim Acta 102(11):973–982Google Scholar
  13. 13.
    Betti M (1997) Use of ion chromatography for the determination of fission products and actinides in nuclear applications. J Chromatogr A 789:369–373CrossRefGoogle Scholar
  14. 14.
    Goutelard F, Caussignac C, Brennetot R, Stadelmann G, Gautier C (2009) Optimization conditions for the separation of rare earth elements, americium, curium and cesium with HPLC technique. J Radioanal Nucl Chem 282:669–675CrossRefGoogle Scholar
  15. 15.
    Choppin GR, Silva RJ (1956) Separation of the lanthanides by ion exchange with α-hydroxyisobutyric acid. J Inorg Nucl Chem 3:153–154CrossRefGoogle Scholar
  16. 16.
    Guillaumont R, Fanghanel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium; chemical thermodynamics series 5. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Fuping H, Haddad P, Jackson PE, Carnevale J (1993) Studies on the retention behaviour of α-hydroxyisobutyric acid complexes of thorium(IV) and uranyl ion in reversed-phase high-performance liquid chromatography. J Chromatogr 640:187–191CrossRefGoogle Scholar
  18. 18.
    Seaborg GT (1993) Overview of the actinide and lanthanide (the f) elements. Radiochim Acta 61:115–122CrossRefGoogle Scholar
  19. 19.
    Johansson B (2000) Structural and electronic relationships between the lanthanide and actinide elements. Hyperfine Interact 128:41–66CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.European Commission, Joint Research Centre – JRC, Directorate G, Nuclear Safety and SecurityKarlsruheGermany

Personalised recommendations