Adsorption of thorium(IV) from aqueous solutions by poly(cyclotriphosphazene-co-4,4′-diaminodiphenyl ether) microspheres

  • Zhipeng Jiang
  • Fan Xie
  • Chuanhong Kang
  • Yanfei WangEmail author
  • Long Yuan
  • Yue Wang


Poly(cyclotriphosphazene-co-4,4′-diaminodiphenyl ether) microspheres (PZA) was based on hexachlorocyclotriphosphazene (HCCP) and 4,4′-diaminodiphenyl ether (ODA). It was synthesized via one-step precipitation method. The PZA microspheres were characterized by FT-IR, XPS, zeta potential and SEM/EDS. Through experimental research, PZA microspheres had the optimal adsorption performance with pH value 3.5, contact time of 60 min, thorium(IV) ions concentration of 30 mg L−1, and PZA microspheres of 10 mg. The maximum adsorption capacity of PZA microspheres for thorium(IV) was 29.04 mg g−1. The adsorption process could be described by the quasi-second order kinetic model and simulated by the Langmuir isotherm equation.


Poly(cyclotriphosphazene-co-4,4′-diaminodiphenyl ether) microspheres Thorium(IV) Adsorption Kinetic 



We are grateful to the University of South China Student Research Learning and Innovative Experimental Project Fund (No. 2018XJXZ334).

Compliance with ethical standards

Conflicts of interest

All the authors do not have any possible conflicts of interest.


  1. 1.
    Björk KI, Netterbrant C (2018) Thorium as an additive for improved neutronic properties in boiling water reactor fuel. Ann Nucl Energy 113:470–475CrossRefGoogle Scholar
  2. 2.
    Yi ZJ, Yao J, Chen HL, Wang F, Yuan ZM, Liu X (2016) Uranium biosorption from aqueous solution onto Eichhornia crassipes. J Environ Radioact 154:43–51CrossRefGoogle Scholar
  3. 3.
    Wade-Gueye NM, Delissen O, Gourmelon P, Aigueperse J, Dublineau I, Souidi M (2012) Chronic exposure to natural uranium via drinking water affects bone in growing rats. Biochem Biophys Acta 1820 7:1121–1127Google Scholar
  4. 4.
    Peng C, Ma Y, Ding Y, He X, Zhang P, Lan T, Wang D, Zhang Z, Zhang Z (2017) Influence of speciation of thorium on toxic effects to green algae Chlorella pyrenoidosa. Int J Mol Sci 18(4):795CrossRefGoogle Scholar
  5. 5.
    Kang J, Sun W, Hu Y, Gao Z, Liu R, Zhang Q, Liu H, Meng X (2017) The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation. Water Res 125:318–324CrossRefGoogle Scholar
  6. 6.
    Osmanlioglu AE (2018) Decontamination of radioactive wastewater by two-staged chemical precipitation. Nucl Eng Technol 50:886–889CrossRefGoogle Scholar
  7. 7.
    Gulin SB, Yu SG, Sidorov IG, Proskurnin VY (2013) Disk mini-adsorbers with radial flow for determination of 234Th concentration in seawater. J Radioanal Nucl Chem 295(2):855–860CrossRefGoogle Scholar
  8. 8.
    Lin C, Wang H, Wang Y, Cheng Z (2010) Selective solid-phase extraction of trace thorium(IV) using surface-grafted Th(IV)-imprinted polymers with pyrazole derivative. Talanta 81(1):30–36CrossRefGoogle Scholar
  9. 9.
    Shaeri M, Torab-Mostaedi M, Kelishami AR (2015) Solvent extraction of thorium from nitrate medium by TBP, Cyanex272 and their mixture. J Radioanal Nucl Chem 303(3):2093–2099Google Scholar
  10. 10.
    Radchenko V, Engle JW, Wilson JJ, Maassen JR, Nortier FM, Taylor WA, Birnbaum ER, Hudston LA, John KD, Fassbender ME (2015) Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes. J Chromatogr A 1380:55–63CrossRefGoogle Scholar
  11. 11.
    Islam M, Patel R (2009) Removal of lead (II) from aqueous environment by a fibrous ion exchanger: polycinnamamide thorium(IV) phosphate. J Hazard Mater 172(2):707–715CrossRefGoogle Scholar
  12. 12.
    Mohamed YT, Hasan MA, El-Reefy SA, Aly HF (2007) Modeling of the permeation of thorium through liquid emulsion membrane. Sep Sci Technol 42(10):2289–2302CrossRefGoogle Scholar
  13. 13.
    Kedari CS, Pandit SS, Gandhi PM (2013) Separation by competitive transport of uranium(VI) and thorium(IV) nitrates across supported renewable liquid membrane containing trioctylphosphine oxide as metal carrier. J Membr Sci 430(3):188–195CrossRefGoogle Scholar
  14. 14.
    Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2017) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702CrossRefGoogle Scholar
  15. 15.
    Zhou L, Yun W, Zou H, Liang X, Kai Z, Liu Z, Adesina AA (2016) Biosorption characteristics of uranium(VI) and thorium(IV) ions from aqueous solution using CaCl2-modified Giant Kelp biomass. J Radioanal Nucl Chem 307(1):635–644CrossRefGoogle Scholar
  16. 16.
    Nakajima A, Tsuruta T (2002) Competitive biosorption of thorium and uranium by Micrococcus luteus. J Radioanal Nucl Chem 39(sup3):528–531Google Scholar
  17. 17.
    Gadd GM, White C (2010) Removal of thorium from simulated acid process streams by fungal biomass: potential for thorium desorption and reuse of biomass and desorbent. J Chem Technol Biotechnol Biotechnol 55(1):39–44CrossRefGoogle Scholar
  18. 18.
    Anirudhan TS, Suchithra PS, Senan P, Tharun AR (2012) Kinetic and equilibrium profiles of adsorptive recovery of thorium(IV) from aqueous solutions using poly(methacrylic acid) grafted cellulose/bentonite superabsorbent composite. Ind Eng Chem Res 51(13):4825–4836CrossRefGoogle Scholar
  19. 19.
    Pamukoglu MY, Kirkan B, Senyurt M (2017) Removal of thorium(IV) from aqueous solution by biosorption onto modified powdered waste sludge: experimental design approach. J Radioanal Nucl Chem 314(1):1–10CrossRefGoogle Scholar
  20. 20.
    Hritcu D, Humelnicu D, Dodi G, Popa MI (2012) Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydr Polym 87(2):1185–1191CrossRefGoogle Scholar
  21. 21.
    Changju C, Sun M, Lee Chang W, Kim Ki-Yun H, Sang Y, Kim Han K, Yang Soo-Chang S (2009) Doxorubicin-polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics. Biomaterials 30(27):4752–4762CrossRefGoogle Scholar
  22. 22.
    Nukavarapu SP, Kumbar SG, Brown JL, Krogman NR, Weikel AL, Hindenlang MD, Nair LS, Allcock HR, Laurencin CT (2008) Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromolecules 9(7):1818CrossRefGoogle Scholar
  23. 23.
    Qian J, Wei W, Huang X, Tao Y, Chen K, Tang X (2012) A study of different polyphosphazene-coated carbon nanotubes as a Pt–Co catalyst support for methanol oxidation fuel cell. J Power Sources 210(210):345–349CrossRefGoogle Scholar
  24. 24.
    Muldoon J, Lin J, Wycisk R, Takeuchi N, Hamaguchi H, Saito T, Hase K, Pintauro PN (2010) High performance fuel cell operation with a non-fluorinated polyphosphazene electrode binder. Fuel Cells 9(5):518–521CrossRefGoogle Scholar
  25. 25.
    Wang X, Fu J, Wang M, Wang Y, Chen Z, Zhang J, Chen J, Xu Q (2014) Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. J Mater Sci 49(14):5056–5065CrossRefGoogle Scholar
  26. 26.
    Chen D, Cui Y, Wang X, Tang X (2010) Polyphosphazene/low-density polyethylene blends: miscibility and flame-retardance studies. J Appl Polym Sci 86(3):709–714CrossRefGoogle Scholar
  27. 27.
    Tan J, Wang Y, Liu M, He C (2017) Adsorption of thorium from aqueous solution by poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol). J Radioanal Nucl Chem 314(3):1–10Google Scholar
  28. 28.
    Chen Z, Fu J, Wang M, Wang X, Zhang J, Xu Q (2014) Adsorption of cationic dye (methylene blue) from aqueous solution using poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) nanospheres. Appl Surf Sci 289:495–501CrossRefGoogle Scholar
  29. 29.
    Qian YC, Ning R, Huang XJ, Chen C, Yu AG, Xu ZK (2013) Glycosylation of polyphosphazene nanofibrous membrane by click chemistry for protein recognition. Macromol Chem Phys 214(16):1852–1858CrossRefGoogle Scholar
  30. 30.
    Wei W, Huang X, Chen K, Tao Y, Tang X (2012) Fluorescent organic–inorganic hybrid polyphosphazene microspheres for the trace detection of nitroaromatic explosives. RSC Adv 2(9):3765–3771CrossRefGoogle Scholar
  31. 31.
    Wei W, Lu R, Tang S, Liu X (2015) Highly cross-linked fluorescent poly(cyclotriphosphazene-co-curcumin) microspheres for the selective detection of picric acid in solution phase. J Mater Chem A 3(8):4604–4611CrossRefGoogle Scholar
  32. 32.
    Yavari R, Asadollahi N, Abbas Mohsen M (2017) Preparation, characterization and evaluation of a hybrid material based on multiwall carbon nanotubes and titanium dioxide for the removal of thorium from aqueous solution. Progress Nucl Energy 100:183–191CrossRefGoogle Scholar
  33. 33.
    Ying Z, You L (2016) Enhanced electro-optic property of host-guest polyphosphazene thin film and its application. Mater Lett 170:114–117CrossRefGoogle Scholar
  34. 34.
    Amarnath N, Appavoo D, Lochab B (2017) Eco-friendly halogen-free flame retardant cardanol polyphosphazene polybenzoxazine networks. ACS Sustain Chem Eng 6(1):389–402CrossRefGoogle Scholar
  35. 35.
    Xu C, Wang J, Yang T, Chen X, Liu X, Ding X (2015) Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr Polym 121:79–85CrossRefGoogle Scholar
  36. 36.
    Peng Z, Huang X, Fu J, Huang Y, Yan Z, Tang X (2010) A one-pot approach to novel cross-linked polyphosphazene microspheres with active amino groups. Macromol Chem Phys 210(9):792–798Google Scholar
  37. 37.
    Kaynar UH, Şabikoğlu İ (2018) Adsorption of thorium (IV) by amorphous silica; response surface modelling and optimization. J Radioanal Nucl Chem 318(2):823–834CrossRefGoogle Scholar
  38. 38.
    Wang XF, Shi KL, Guo ZJ, Wu WS (2010) Eu(III) adsorption on rutile: batch experiments and modeling. Sci China Chem 53(12):2628–2636CrossRefGoogle Scholar
  39. 39.
    Giri AK, Patel RK, Mahapatra SS (2011) Artificial neural network (ANN) approach for modelling of arsenic (III) biosorption from aqueous solution by living cells of Bacillus cereus biomass. Chem Eng J 178(24):15–25CrossRefGoogle Scholar
  40. 40.
    Wang P, Du M, Zhu H, Bao S, Yang T, Zou M (2015) Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism. J Hazard Mater 286:533–544CrossRefGoogle Scholar
  41. 41.
    Hojati S, Landi A (2015) Kinetics and thermodynamics of zinc removal from a metal-plating wastewater by adsorption onto an Iranian sepiolite. Int J Environ Sci Technol 12(1):203–210CrossRefGoogle Scholar
  42. 42.
    Grzegorz O, Alicja BO, Bogdan S (2015) Uranium ((234)U, (235)U and (238)U) contamination of the environment surrounding phosphogypsum waste heap in Wiślinka (northern Poland). J Environ Radioact 146:56–66CrossRefGoogle Scholar
  43. 43.
    Malkoc E, Nuhoglu Y (2005) Investigations of nickel(II) removal from aqueous solutions using tea factory waste. J Hazard Mater 127(1):120–128CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyangChina

Personalised recommendations