Synthesis and bioevaluation of novel radioiodinated PEG-modified 2-nitroimidazole derivatives for tumor hypoxia imaging

  • Fan Wang
  • Xianteng Yang
  • Hua Zhu
  • Zhi Yang
  • Taiwei ChuEmail author


Two novel radioiodinated PEG-modified 2-nitromidazole derivatives were prepared. The two radiotracers demonstrate good stability in vitro. In the cellular uptake experiments, the uptakes in hypoxic condition are higher than those in aerobic condition for two radiotracers. The biodistribution results in mice bearing S180 tumor demonstrate the uptakes of the two radiotracers in tumor show maximum at 1 h. The two radiotracers could be eliminated quickly from normal tissue. In SPECT/CT imaging study, the tumor could be observed clearly in S180 tumor using the two radiotracers. These results suggest they are worth of further study as potential hypoxia imaging agents.


2-Nitroimidazole 2-(4′-Aminophenyl)benzothiazole Tumor Hypoxia imaging 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11575010 and 21371017).

Supplementary material

10967_2019_6649_MOESM1_ESM.docx (5.9 mb)
Supplementary material 1 (DOCX 5991 kb)


  1. 1.
    Dhani N, Fyles A, Hedley D, Milosevic M (2015) The clinical significance of hypoxia in human cancers. Semin Nucl Med 45(2):110–121CrossRefGoogle Scholar
  2. 2.
    Grimes DR, Warren DR, Warren S (2017) Hypoxia imaging and radiotherapy: bridging the resolution gap. Br J Radiol 90(1076):20160939CrossRefGoogle Scholar
  3. 3.
    Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11(6):393–410CrossRefGoogle Scholar
  4. 4.
    Kumar P, Bacchu V, Wiebe LI (2015) The chemistry and radiochemistry of hypoxia-specific, radiohalogenated nitroaromatic imaging probes. Semin Nucl Med 45(2):122–135CrossRefGoogle Scholar
  5. 5.
    Mei L, Wang Y, Chu T (2012) Tc/Re complexes bearing bisnitroimidazole or mononitroimidazole as potential bioreductive markers for tumor: synthesis, physicochemical characterization and biological evaluation. Eur J Med Chem 58(12):50–63CrossRefGoogle Scholar
  6. 6.
    Joyard Y, Joncour VL, Castel H, Diouf CB, Bischoff L, Papamicaël C, Levacher V, Vera P, Bohn P (2013) Synthesis and biological evaluation of a novel 99mTc labeled 2-nitroimidazole derivative as a potential agent for imaging tumor hypoxia. Bioorg Med Chem Lett 23(13):3704–3708CrossRefGoogle Scholar
  7. 7.
    Ruan Q, Zhang X, Xiao L, Duan X, Zhang J (2018) Novel 99mTc labelled complexes with 2-nitroimidazole isocyanide: design, synthesis and evaluation as potential tumor hypoxia imaging agents. Medchemcomm 9:988–994CrossRefGoogle Scholar
  8. 8.
    Jerabek PA, Patrick TB (1986) Synthesis and biodistribution of 18F-labeled fluoronitroimidazoles: potential in vivo markers of hypoxic tissue. Int J Radiat Appl Instrum A Appl Radiat Isot 37(7):599–605CrossRefGoogle Scholar
  9. 9.
    Matthias B, Ulrich R, Schubiger PA, Simon Mensah A (2004) Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O–H2O. J Nucl Med 45(11):1851Google Scholar
  10. 10.
    Patt M, Sorger D, Scheunemann M, Stöcklin G (2002) Adduct of 2-[18F]FDG and 2-nitroimidazole as a putative radiotracer for the detection of hypoxia with PET: synthesis, in vitro- and in vivo-characterization. Appl Radiat Isot 57(5):705–712CrossRefGoogle Scholar
  11. 11.
    Grönroos T, Bentzen L, Marjamäki P, Murata R, Horsman MR, Keiding S, Eskola O, Haaparanta M, Minn H, Solin O (2004) Comparison of the biodistribution of two hypoxia markers [18F]FETNIM and [18F]FMISO in an experimental mammary carcinoma. Eur J Nucl Med Mol Imaging 31(4):513–520CrossRefGoogle Scholar
  12. 12.
    Komar G, Lehtiö K, Seppänen M, Eskola O, Levola H, Lindholm P, Sipilä H, Seppälä J, Grénman R, Solin O (2014) Prognostic value of tumour blood flow, [18F]EF5 and [18F]FDG PET/CT imaging in patients with head and neck cancer treated with radiochemotherapy. Eur J Nucl Med Mol Imaging 41(11):2042–2050CrossRefGoogle Scholar
  13. 13.
    Remy K, Bennink RJ, Geertjan VT, Bijlsma MF, Besselink MGH, Henegouwen MI, Berge Van, Wilmink JW, Nederveen AJ, Windhorst AD, Hulshof MCCM (2015) Feasibility and repeatability of PET with the hypoxia tracer [18F]HX4 in oesophageal and pancreatic cancer. Radiother Oncol 116(1):94–99CrossRefGoogle Scholar
  14. 14.
    Kumar P, Stypinski D, Xia H, Mcewan AJB, Machulla HJ, Wiebe LI (2015) Fluoroazomycin arabinoside (FAZA): synthesis, 2H and 3H-labelling and preliminary biological evaluation of a novel 2-nitroimidazole marker of tissue hypoxia. J Label Compd Radiopharm 42(1):3–16CrossRefGoogle Scholar
  15. 15.
    Cao J, Liu Y, Zhang L, Du F, Ci Y, Yan Z, Hao X, Yao X, Shi S, Lin Z (2017) Synthesis of novel PEG-modified nitroimidazole derivatives via “hot-click” reaction and their biological evaluation as potential PET imaging agent for tumors. J Radioanal Nucl Chem 312(6):1–14Google Scholar
  16. 16.
    Chu T, Li R, Hu S, Liu X, Wang X (2004) Preparation and biodistribution of technetium-99m-labeled 1-(2-nitroimidazole-1-yl)-propanhydroxyiminoamide (N2IPA) as a tumor hypoxia marker. Nucl Med Biol 31(2):199–203CrossRefGoogle Scholar
  17. 17.
    Su ZF, Ballinger JR, Rauth AM, Abrams DN, Billinghurst MW (2000) A novel amine-dioxime chelator for technetium-99m: synthesis and evaluation of 2-nitroimidazole-containing analogues as markers for hypoxic cells. Bioconjug Chem 11(5):652–663CrossRefGoogle Scholar
  18. 18.
    Sun W, Chu T (2015) In vivo click reaction between Tc-99m-labeled azadibenzocyclooctyne-MAMA and 2-nitroimidazole-azide for tumor hypoxia targeting. Bioorg Med Chem Lett 25(20):4453–4456CrossRefGoogle Scholar
  19. 19.
    Xiao L, Ruan Q, Ling L, Zhang X, Duan X, Teng Y, Zhang J (2018) Biological evaluation and SPECT imaging of tumor hypoxia using a novel technetium-99m labeled tracer with 2-nitroimidazole moiety. J Radioanal Nucl Chem 317(3):1463–1468CrossRefGoogle Scholar
  20. 20.
    Ballinger JR, Kee JW, Rauth AM (1996) In vitro and in vivo evaluation of a technetium-99m-labeled 2-nitroimidazole (BMS181321) as a marker of tumor hypoxia. J Nucl Med 37(6):1023–1031Google Scholar
  21. 21.
    Li Z, Song X, Zhang J (2015) Synthesis and biological evaluation of novel 99mTc labeled ornidazole xanthate complexes as potential hypoxia imaging agents. J Radioanal Nucl Chem 306(2):1–8CrossRefGoogle Scholar
  22. 22.
    Wang J, Zheng X, Wu W, Yang W, Liu Y, Wang J, Zheng X, Wu W, Yang W, Liu Y (2014) Synthesis and preliminary biological evaluation of 99mTc(CO)3-labeled pegylated 2-nitroimidazoles. J Radioanal Nucl Chem 300(3):1013–1020CrossRefGoogle Scholar
  23. 23.
    Zhang X, Su ZF, Ballinger JR, Rauth AM, Pollak A, Thornback JR (2000) Targeting hypoxia in tumors using 2-nitroimidazoles with peptidic chelators for technetium-99m: effect of lipophilicity. Bioconjug Chem 11(3):401CrossRefGoogle Scholar
  24. 24.
    Brown JM, Workman P (1980) Partition coefficient as a guide to the development of radiosensitizers which are less toxic than misonidazole. Radiat Res 82(1):171–190CrossRefGoogle Scholar
  25. 25.
    White RA, Workman P, Brown JM (1980) The pharmacokinetics and tumor and neural tissue penetrating properties of SR-2508 and SR-2555 in the dog–hydrophilic radiosensitizers potentially less toxic than misonidazole. Radiat Res 84(3):542–561CrossRefGoogle Scholar
  26. 26.
    Mathis CA, Bacskai BJ, Kajdasz ST, Mclellan ME, Frosch MP, Hyman BT, Holt DP, Wang Y, Huang GF, Debnath ML (2002) A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg Med Chem Lett 12(3):295–298CrossRefGoogle Scholar
  27. 27.
    Wang Y, Mathis CA, Huang GF, Debnath ML, Holt DP, Shao L, Klunk WE (2003) Effects of lipophilicity on the affinity and nonspecific binding of iodinated benzothiazole derivatives. J Mol Neurosci 20(3):255CrossRefGoogle Scholar
  28. 28.
    Klunk WE, Wang Y, Huang GF, Debnath M, Holt D, Mathis C (2001) Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci 69(13):1471–1484CrossRefGoogle Scholar
  29. 29.
    Li Z, Chu T, Liu X, Wang X (2005) Synthesis and in vitro and in vivo evaluation of three radioiodinated nitroimidazole analogues as tumor hypoxia markers. Nucl Med Biol 32(3):225–231CrossRefGoogle Scholar
  30. 30.
    Harris JM, Martin NE, Modi M (2001) Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 40(7):539–551CrossRefGoogle Scholar
  31. 31.
    Zhang W, Oya S, Kung MP, Hou C, Maier DL, Kung HF (2005) F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Aβ aggregates in the brain. Nucl Med Biol 32(8):799–809CrossRefGoogle Scholar
  32. 32.
    Lee CM, Choi Y, Huh EJ, Lee KY, Song HC, Sun MJ, Jeong HJ, Cho CS, Bom HS (2005) Polyethylene glycol (PEG) modified 99mTc-HMPAO-liposome for improving blood circulation and biodistribution: the effect of the extent of PEGylation. Cancer Biother Radiopharm 20(6):620CrossRefGoogle Scholar
  33. 33.
    Dissoki S, Billauer EH (2009) Modified PEG-anilinoquinazoline derivatives as potential EGFR PET agents. J Label Compd Radiopharm 52(2):41–52CrossRefGoogle Scholar
  34. 34.
    Serdons K, Verduyckt T, Cleynhens J, Terwinghe C, Mortelmans L, Bormans G, Verbruggen A (2007) Synthesis and evaluation of a 99mTc-BAT-phenylbenzothiazole conjugate as a potential in vivo tracer for visualization of amyloid beta. Bioorg Med Chem Lett 17(22):6086–6090CrossRefGoogle Scholar
  35. 35.
    Mengchao C, Xuedan W, Pingrong Y, Jinming Z, Zijing L, Xiaojun Z, Yanping Y, Masahiro O, Hongmei J, Hideo S (2012) Synthesis and evaluation of novel 18F labeled 2-pyridinylbenzoxazole and 2-pyridinylbenzothiazole derivatives as ligands for positron emission tomography (PET) imaging of β-amyloid plaques. J Med Chem 55(21):9283CrossRefGoogle Scholar
  36. 36.
    Shi DF, Bradshaw TD, Wrigley S, Mccall CJ, Lelieveld P, Fichtner I, Stevens MF (1996) Antitumor benzothiazoles. 3. Synthesis of 2-(4-aminophenyl)benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J Med Chem 39(17):3375–3384CrossRefGoogle Scholar
  37. 37.
    Wei Z, Qiang Z, Chen Q, Hua Z, Zhi Y, Chu T (2017) In vitro and in vivo evaluation of a 64Cu-labeled propylene amine oxime complex as a potential hypoxia imaging agent bearing two 3-nitrotriazole groups. J Radioanal Nucl Chem 58:1–8Google Scholar
  38. 38.
    Arai M, Kawachi T, Setiawan A, Kobayashi M (2010) Hypoxia-selective growth inhibition of cancer cells by furospinosulin-1, a furanosesterterpene isolated from an Indonesian marine sponge. ChemMedChem 5(11):1919–1926CrossRefGoogle Scholar
  39. 39.
    Li Z, Lin X, Zhang J, Wang X, Jin Z, Zhang W, Zhang Y (2016) Kit formulation for preparation and biological evaluation of a novel 99mTc-oxo complex with metronidazole xanthate for imaging tumor hypoxia. Nucl Med Biol 43(2):165–170CrossRefGoogle Scholar
  40. 40.
    Mannan RH, Somayahu VV, Lee J, Mercer JR, Chapman JD, Li Wiebe (1991) Radioiodinated 1-(5-iodo-5-deoxy-beta-d-arabinofuranosyl)-2-nitroimidazole (iodoazo-mycin arabinoside: IAZA): a novel marker of tissue hypoxia. J Nucl Med 32(9):1764–1770Google Scholar
  41. 41.
    Nunn A, Linder K, Strauss HW (1995) Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 22(3):265–280CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Medical CollegeGuizhou UniversityGuiyangChina
  3. 3.Department of OrthopaedicsGuizhou Provincial People’s HospitalGuiyangChina
  4. 4.Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear MedicinePeking University Cancer Hospital and InstituteBeijingChina

Personalised recommendations