Journal of Radioanalytical and Nuclear Chemistry

, Volume 321, Issue 3, pp 1035–1044 | Cite as

Efficient scavenging of uranium (VI) using porous hexagonal boron nitride by a combined process of surface adsorption and induced precipitation crystallization

  • Li Li
  • Yin Zhao
  • Yang JinEmail author
  • Wensheng Linghu
  • Chaogui ChenEmail author
  • Abdullah M. Asiri
  • Hadi M. Marwani
  • Guodong ShengEmail author


An ammonium/hydroxyl-enriched p-BN microrods were synthesized and the adsorption behavior of uranyl on p-BN was systematically studied. The adsorption kinetic and isotherm studies revealed the adsorption behavior is independent on electrostatic attraction or chemisorption. The results demonstrate uranyl hydrolyzed precipitated crystals are formed on the surface of p-BN at an optimized pH of 2.86 and the maximum adsorption capacity can reach 413 mg g−1 at T = 303 K. A hypothetical adsorption mechanism with a combination of surface adsorption and induced precipitation crystallization was proposed.


Porous hexagonal boron nitride Adsorption Uranyl Uranyl hydrolyzed precipitate 



Financial supports from the National Natural Science Foundation of China (21577093, and 21777102), Natural Science Foundation of Zhejiang Province (LY15B070001) is greatly acknowledged.

Supplementary material

10967_2019_6644_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1282 kb)


  1. 1.
    Jiang X-H, Xing Q-J, Luo X-B et al (2018) Simultaneous photoreduction of uranium (VI) and photooxidation of arsenic (III) In aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl Catal B-Environ 228:29–38CrossRefGoogle Scholar
  2. 2.
    Hu B-W, Ye F, Ren X-M, Zhao D-L et al (2016) X-ray absorption fine structure study of enhanced sequestration of U(VI) and Se(IV) by montmorillonite decorated zerovalent iron nanoparticles. Environ Sci Nano 3:1460–1472CrossRefGoogle Scholar
  3. 3.
    Anirudhan TS, Radhakrishnan TG (2009) Improved performance of abiomaterial-based cation exchanger for the adsorption of uranium (VI) fromwater andnuclear industry wastewater. J Environ Radioact 100:250–257CrossRefGoogle Scholar
  4. 4.
    Linghu W-S, Yang H, Sun Y-X, Sheng G-D et al (2017) One-pot synthesis of LDH/GO composites as highly effective adsorbents for decontamination of U(VI). ACS Sustain Chem Eng 5(6):5608–5616CrossRefGoogle Scholar
  5. 5.
    Sheng G-D, Yang P-J, Tamg Y-N, Hu Q-Y et al (2016) New insights into the primary roles of diatomite in the enhanced sequestration of UO2 2+ by zerovalent iron nanoparticles: an advanced approach utilizing XPS and EXAFS. Appl Catal B Environ 193:189–197CrossRefGoogle Scholar
  6. 6.
    Nriagu JQ, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soil by trace metals. Nature 333:134–139CrossRefGoogle Scholar
  7. 7.
    Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134:16441–16446CrossRefGoogle Scholar
  8. 8.
    Zhu L, Sheng D, Xu C, Dai X et al (2017) Identifying the recognition site for selective trapping of 99TcO4-in a hydrolytically stable and radiation resistant cationic metal-organic framework. J Am Chem Soc 139:14873–14876CrossRefGoogle Scholar
  9. 9.
    Wang Y, Morales-Martinenz R, Zhang X, Yang W et al (2017) Unique four-electron metal-to-cage transfer of Th to a 82 fullerene cage: complete structural characterization of Th@C-3 V(8)-C-82. J Am Chem Soc 139:5110–5116CrossRefGoogle Scholar
  10. 10.
    Wang Y, Liu Z, Li Y, Bai Z et al (2015) Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J Am Chem Soc 137:6144–6147CrossRefGoogle Scholar
  11. 11.
    Jungseung K, Costas T, Richard TM, Yatsandra O, Tomonori S et al (2013) Recovery of uranium from seawater: a review of current status and future research needs. Sep Sci Technol 48:367–387CrossRefGoogle Scholar
  12. 12.
    Agrawal YK, Shrivastav P, Menon SK (2000) Solvent extraction, separation of uranium (VI) with crown ether. Sep Purif Technol 20:177–183CrossRefGoogle Scholar
  13. 13.
    Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium (VI) and thorium (IV) prior to analytical determination-an overview. Talanta 68:1047–1064CrossRefGoogle Scholar
  14. 14.
    Mellah A, Chegrouche S, Barkat M (2007) The precipitation of ammonium uranyl carbonate (AUC): thermodynamic and kinetic investigations. Hydrometallurgy 85:163–171CrossRefGoogle Scholar
  15. 15.
    Bockris J (2013) Electrochemistry of cleaner environments. Springer, New YorkGoogle Scholar
  16. 16.
    Sun Y-B, Wu Z-Y, Wang X-X, Ding C-C et al (2016) Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ Sci Technol 50:4459–4467CrossRefGoogle Scholar
  17. 17.
    Sheng G, Hu J, Alsaedi A, Shammakh W, Monaquel S et al (2015) Interaction of uranium (VI) with titanate nanotubes by macroscopic and spectroscopic investigation. J Mol Liq 212:563–568CrossRefGoogle Scholar
  18. 18.
    Cheng W-C, Wang M-L, Yang Z-G, Sun Y-B, Ding C-C (2014) The efficient enrichment of U(VI) by graphene oxide-supported chitosan. RSC Adv. 4:61919–61926CrossRefGoogle Scholar
  19. 19.
    Sun Y-B, Yang S-B, Chen Y, Ding C-C et al (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49:4255–4262CrossRefGoogle Scholar
  20. 20.
    Cheng W-C, Ding C-C, Sun Y-B, Wang X-K (2015) Fabrication of fungus/attapulgite composites and their removal of U(VI) from aqueous solution. Chem Eng J 269(380):1–8CrossRefGoogle Scholar
  21. 21.
    Ding C-C, Cheng W-C, Sun Y-B, Wang X-K (2015) Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe0. Geochim Cosmochim Acta 165:86–107CrossRefGoogle Scholar
  22. 22.
    Dong L-J, Yang J-X, Mou Y-Y, Sheng G-D et al (2017) Effect of various environmental factors on the adsorption of U(VI) onto biochar derived from rice straw. J Radioanal Nucl Chem 314:377–386CrossRefGoogle Scholar
  23. 23.
    Simsek S, Ulusoy U (2012) Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime. J Radioanal Nucl Chem 292:41–51CrossRefGoogle Scholar
  24. 24.
    Sheng G-D, Huang C-C, Chen G-H, Sheng J et al (2018) Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: a spectroscopic and microscopic investigation. Environ Pollut 233:125–131CrossRefGoogle Scholar
  25. 25.
    Chang K-K, Li X, Hu B-W, Hu J et al (2017) Molecular insights into the role of fulvic acid in cobalt sorption onto graphene oxide and reduced graphene oxide. Chem Eng J 327:320–327CrossRefGoogle Scholar
  26. 26.
    Weng Q-H, Wang X-B, Wang X, Bando Y, Golberg D (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem Soc Rev 45:3989–4012CrossRefGoogle Scholar
  27. 27.
    Yu S-J, Wang X-X, Pang H-W, Zhang R et al (2018) Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review. Chem Eng J 333:343–360CrossRefGoogle Scholar
  28. 28.
    Li J, Lin J, Xu X-W, Zhang X-H et al (2013) Porous boron nitride with high surface area: hydrogen storge and water treatment. Nanotechnol. 24:155603CrossRefGoogle Scholar
  29. 29.
    Xue Y-W, Dai P-C, Jiang X-F, Wang X-B et al (2016) Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification. J Mater Chem A 4:1469–1478CrossRefGoogle Scholar
  30. 30.
    Li J, Jin P, Tang C (2014) Cr(III) adsorption by fluorinated activated boron nitride: a combined experimental and theoretical investigation. RSC Adv. 4:14815–14821CrossRefGoogle Scholar
  31. 31.
    Song Q-Q, Fang Y, Liu Z-Y, Li L-L et al (2017) The performance of porous hexagonal BN in high adsorption capacity towards antibiotics pollutants from aqueous solution. Chem Eng J 325:71–79CrossRefGoogle Scholar
  32. 32.
    Li J, Huang Y, Liu Z-Y, Zhang J et al (2015) Chemical activation of boron nitride fibers for improved cationic dye removal performance. J Mater Chem A. 3:8185–8193CrossRefGoogle Scholar
  33. 33.
    Chen M-M, Wei D, Chu W, Wang T, Tong D-G (2017) One-pot synthesis of O-doped BN nanosheets as capacitive deionization electrode for efficient removal of heavy metal ions from water. J Mater Chem A 32:17029–17039CrossRefGoogle Scholar
  34. 34.
    Tang C-C, Bando Y, Huang Y, Zhi C-Y, Golberg D (2008) Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles. Adv Funct Mater 18:3653–3661CrossRefGoogle Scholar
  35. 35.
    Zhi C-Y, Bando Y, Tang C-C, Golberg D (2005) Phonon characteristics and cathodo-lumininescence of boron nitride nanotubes. Appl Phys Lett 86:213110CrossRefGoogle Scholar
  36. 36.
    George S (2001) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, New YorkGoogle Scholar
  37. 37.
    Merritt RC (1971) The extractive metallurgy of uranium. Johnson, BoulderGoogle Scholar
  38. 38.
    Crist BV (1999) Handbook of the elements and native oxides. XPS International Inc., Mountain ViewGoogle Scholar
  39. 39.
    Doina H, Catalin B, Dumitru G (2014) Removal of uranium (VI) and thorium(IV) ions from aqueous solutions by functionalized silica: kinetic and thermodynamic studies. J Radioanal Nucl Chem 299:1183–1190CrossRefGoogle Scholar
  40. 40.
    Akkaya R, Akkaya B (2013) Adsorption isotherms, kinetics, thermodynamics and desorption studies for uranium and thorium ions from aqueous solution by novel microporous composite P (HEMA-EP). J Nucl Mater 434:328–333CrossRefGoogle Scholar
  41. 41.
    Liu D-Q, Liu Z-R, Wang C-F, Lai Y (2016) Removal of uranium (VI) from aqueous solution using nanoscale zero-valent iron supported on activated charcoal. J Radioanal Nucl Chem 310:1131–1137CrossRefGoogle Scholar
  42. 42.
    Yi Z-J, Yao J, Zhu M-J, Chen H-L et al (2013) Batch study of uranium biosorption by Elodea canadensis biomass. J Radioanal Nucl Chem 295:2029–2034CrossRefGoogle Scholar
  43. 43.
    Al-Hobaib AS, Al-Suhybani AA (2014) Removal of uranyl ions from aqueous solutions using barium titanate. J Radioanal Nucl Chem 299:559–567CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringShaoxing UniversityShaoxingPeople’s Republic of China
  2. 2.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations