Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 321, Issue 3, pp 805–814 | Cite as

Improving the efficiency in the detection of gamma activities in environmental soil samples: influence of the granulometry and soil density

  • R. Torres Astorga
  • M. G. RizzottoEmail author
  • H. Velasco
Article
  • 46 Downloads

Abstract

In this work the efficiency calibration curves for a HPGe gamma detector were obtained from soil standards prepared in our laboratory using typical Argentine regional soils. They were made in pot and Petri dish geometries, for different soil granulometries, by using two mixed nuclide reference solutions manufactured by Eckert & Ziegler and provided by the IAEA. The efficiency curves obtained were tested with the reference materials IAEA-375, IAEA-447, CNEA-81-11 as well as the soil sample used in the IAEA-2013 proficiency test. The results allow to improve the quality in the analytical measurements on the content of radionuclides in local soils.

Keywords

Gamma ray spectrometry Efficiency calibration HPGe detector Multigamma source 

Notes

Acknowledgements

This research was supported by Universidad Nacional de San Luis (UNSL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and International Atomic Energy Agency (IAEA).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Murray AS, Marten R, Johnston A, Martin P (1987) Analysis for naturally occuring radionuclides at environmental concentrations by gamma spectrometry. J Radioanal Nucl Chem 115:263–288CrossRefGoogle Scholar
  2. 2.
    Gilmore G, Hemingway JD (1995) Practical gamma-ray spectrometry. Wiley, New YorkGoogle Scholar
  3. 3.
    Boson J, Ågren G, Johansson L (2008) A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations. Nucl Instrum Methods Phys Res Sect A 587:304–314CrossRefGoogle Scholar
  4. 4.
    Vargas MJ, Timón AF, Dı́az NC, Sánchez DP (2002) Monte Carlo simulation of the self-absorption corrections for natural samples in gamma-ray spectrometry. Appl Radiat Isot 57:893–898CrossRefGoogle Scholar
  5. 5.
    Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J Environ Radioact 99:1799–1807CrossRefGoogle Scholar
  6. 6.
    Boshkova T, Minev L (2001) Corrections for self-attenuation in gamma-ray spectrometry of bulk samples. Appl Radiat Isot 54:777–783CrossRefGoogle Scholar
  7. 7.
    He Q, Walling DE (1996) Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. J Environ Radioact 30:117–137CrossRefGoogle Scholar
  8. 8.
    Haddadchi A, Ryder DS, Evrard O, Olley J (2013) Sediment fingerprinting in fluvial systems: review of tracers, sediment sources and mixing models. Int J Sedim Res 28:560–578CrossRefGoogle Scholar
  9. 9.
    Li G, Liang Y, Xu J, Bai L (2015) Efficiency corrections in determining the 137Cs inventory of environmental soil samples by using relative measurement method and GEANT4 simulations. J Environ Radioact 146:94–101CrossRefGoogle Scholar
  10. 10.
    Moens L, De Donder J, Xi-lei L, De Corte F, De Wispelaere A, Simonits A, Hoste J (1981) Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries. Nucl Instrum Methods Phys Res 187:451–472CrossRefGoogle Scholar
  11. 11.
    Nikolic JK, Rajačić MM, Todorovic D, Vidmar T (2016) The first experimental test of the MEFFTRAN software on HPGe detector calibration for environmental samples. J Environ Radioact 165:191–196CrossRefGoogle Scholar
  12. 12.
    Vidmar T, Kanisch G, Vidmar G (2011) Calculation of true coincidence summing corrections for extended sources with EFFTRAN. Appl Radiat Isot 69:908–911CrossRefGoogle Scholar
  13. 13.
    Vukanac I, Djurašević M, Kandić A, Novković D, Nadjerdj L, Milošević Z (2008) Experimental determination of the HPGe spectrometer efficiency curve. Appl Radiat Isot 66:792–795CrossRefGoogle Scholar
  14. 14.
    Ebaid YY (2009) On the use of reference materials in gamma-ray spectrometric efficiency calibration for environmental samples. J Radioanal Nucl Chem 280:21–25CrossRefGoogle Scholar
  15. 15.
    Harb S, Salahel Din K, Abbady A (2009) Study of efficiency calibrations of HPGe detectors for radioactivity measurements of environmental samples. In: Proceedings of the 3rd Environmental Physics Conference, 19–23 Feb. 2008, Aswan, EgyptGoogle Scholar
  16. 16.
    Canberra (2009) Genie 2000 version 3.2.1 basic spectroscopy software & documentation. Canberra (2010) Genie 2000 version 3.2.2 gamma analysis softwareGoogle Scholar
  17. 17.
    Xhixha G, Alberi M, Baldoncini M, Bode K, Bylyku E, Cfarku F, Callegari I, Hasani F, Landsberger S, Mantovani F, Rodriguez E, Shala F, Strati V, Xhixha Kaceli M (2016) Calibration of HPGe detectors using certified reference materials of natural origin. J Radioanal Nucl Chem 307:1507–1517CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • R. Torres Astorga
    • 1
  • M. G. Rizzotto
    • 1
    Email author
  • H. Velasco
    • 1
  1. 1.Grupo de Estudios Ambientales, Instituto de Matemática Aplicada San LuisUniversidad Nacional de San Luis – CONICETSan LuisArgentina

Personalised recommendations