Ultralight sulfonated graphene aerogel for efficient adsorption of uranium from aqueous solutions

  • Zhibin Zhang
  • Jian Huang
  • Zhimin Dong
  • Bingkun Luo
  • Yuhui Liu
  • Ying Dai
  • Xiaohong Cao
  • Youqun Wang
  • Rong HuaEmail author
  • Yunhai LiuEmail author


An ultralight sulfonated graphene aerogel (GA-SO3H) was synthesized via simply gas phase sulfonation and was adopted to adsorb U(VI) from radioactive wastewater. The characterization confirmed plentiful sulfonate groups on GA-SO3H surfaces. GA-SO3H exhibited high U(VI) sorption capacity with maximum amount of 148.4 mg g−1 and reached maximum separation selectivity of 61.38% at 298 K and pH 5.0 due to the surface complexation between the O atoms of sulfonate groups and uranyl ions. Furthermore, GA-SO3H exhibited satisfied regeneration and excellent structural stability. This paper highlighted ultralight GA-SO3H as an efficient adsorbent for effective adsorption/recovery of uranyl ions from radioactive wastewater.


Graphene aerogel Sulfonation Uranium Adsorption Interaction mechanism 



This work was financially supported by the National Natural Science Foundation of China (21561002, 21866004, 21866003, 21501025, 11605027, 21761002), the China Postdoctoral Science Foundation (2016M600981), the Science & Technology Support Program of Jiangxi Province (Grant No. 2018ACB21007) and the Project of Jiangxi Provincial Department of Education (Grant Nos. GJJ160535, GJJ171515).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10967_2019_6641_MOESM1_ESM.docx (235 kb)
Supplementary material 1 (DOCX 235 kb)


  1. 1.
    Razmkhah M, Mosavian MTH, Moosavi F et al (2018) CO2 gas adsorption into graphene oxide framework: effect of electric and magnetic field. Appl Surf Sci 456:318–327. CrossRefGoogle Scholar
  2. 2.
    Zhao G, Li J, Ren X et al (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45(24):10454–10462. CrossRefGoogle Scholar
  3. 3.
    Jin Z, Wang X, Sun Y et al (2015) Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies. Environ Sci Technol 49(15):9168–9175. CrossRefGoogle Scholar
  4. 4.
    Dreyer DR, Park S, Bielawski CW et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240. CrossRefGoogle Scholar
  5. 5.
    Zhang Z, Dong Z, Wang X et al (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U (VI): batch and fixed-bed column studies. Chem Eng J 370:1376–1387. CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Dong Z, Wang X et al (2018) Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217. CrossRefGoogle Scholar
  7. 7.
    Fan Z, Yan J, Zhi L et al (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22(33):3723–3728. CrossRefGoogle Scholar
  8. 8.
    Tao Y, Kong D, Zhang C et al (2014) Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets. Carbon 69:169–177. CrossRefGoogle Scholar
  9. 9.
    Sun X, Cheng P, Wang H et al (2015) Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance. Carbon 92:1–10. CrossRefGoogle Scholar
  10. 10.
    Yin S, Niu Z, Chen X (2012) Assembly of graphene sheets into 3D macroscopic structures. Small 8(16):2458–2463. CrossRefGoogle Scholar
  11. 11.
    Lv R, Cruz-Silva E, Terrones M (2014) Building complex hybrid carbon architectures by covalent interconnections: graphene–nanotube hybrids and more. ACS Nano 8(5):4061–4069. CrossRefGoogle Scholar
  12. 12.
    Ouyang W, Sun J, Memon J et al (2013) Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 62:501–509. CrossRefGoogle Scholar
  13. 13.
    Vickery JL, Patil AJ, Mann S (2009) fabrication of graphene–polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater 21(21):2180–2184. CrossRefGoogle Scholar
  14. 14.
    Zu SZ, Han BH (2010) Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J Phys Chem C 113(31):13651–13657. CrossRefGoogle Scholar
  15. 15.
    Xu Y, Wu Q, Sun Y et al (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4(12):7358–7362. CrossRefGoogle Scholar
  16. 16.
    Chang Y, Li J, Wang B et al (2013) Synthesis of 3D nitrogen-doped graphene/Fe3O4 by a metal ion induced self-assembly process for high-performance Li-ion batteries. J Mater Chem A 1(46):14658–14665. CrossRefGoogle Scholar
  17. 17.
    Cong HP, Ren XC, Wang P et al (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6(3):2693–2703. CrossRefGoogle Scholar
  18. 18.
    Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25(18):2554–2560. CrossRefGoogle Scholar
  19. 19.
    Wan YJ, Zhu PL, Yu SH et al (2017) Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 115:629–639. CrossRefGoogle Scholar
  20. 20.
    Kim T, Lee JS, Li K et al (2016) High performance graphene foam emitter. Carbon 101:345–351. CrossRefGoogle Scholar
  21. 21.
    Yu X, Zhang M, Yuan W et al (2015) A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. J Mater Chem A 3(13):6921–6928. CrossRefGoogle Scholar
  22. 22.
    Wang H, Zhang D, Yan T et al (2013) Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. J Mater Chem A 1(38):11778–11789. CrossRefGoogle Scholar
  23. 23.
    Choi BG, Yang MH, Hong WH et al (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028. CrossRefGoogle Scholar
  24. 24.
    Shi L, Chu Z, Liu Y et al (2014) In situ fabrication of three-dimensional graphene films on gold substrates with controllable pore structures for high-performance electrochemical sensing. Adv Func Mater 24(44):7032–7041. CrossRefGoogle Scholar
  25. 25.
    Huang X, Qian K, Yang J et al (2012) Functional nanoporous graphene foams with controlled pore sizes. Adv Mater 24(32):4419–4423. CrossRefGoogle Scholar
  26. 26.
    Yao HB, Ge J, Wang CF et al (2013) A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Adv Mater 25(46):6692–6698. CrossRefGoogle Scholar
  27. 27.
    Stolz A, Le Floch S, Reinert L et al (2016) Melamine-derived carbon sponges for oil-water separation. Carbon 107:198–208. CrossRefGoogle Scholar
  28. 28.
    Huang X, Sun B, Su D et al (2014) Soft-template synthesis of 3D porous graphene foams with tunable architectures for lithium–O2 batteries and oil adsorption applications. J Mater Chem A 2(21):7973–7979. CrossRefGoogle Scholar
  29. 29.
    Chen J, Sheng K, Luo P et al (2012) Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv Mater 24(33):4569–4573. CrossRefGoogle Scholar
  30. 30.
    Huang H, Lei C, Luo G et al (2016) UV-assisted reduction of graphene oxide on Ni foam as high performance electrode for supercapacitors. Carbon 107:917–924. CrossRefGoogle Scholar
  31. 31.
    Mi X, Huang G, Xie W et al (2012) Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 50(13):4856–4864. CrossRefGoogle Scholar
  32. 32.
    Andjelkovic I, Tran DNH, Kabiri S et al (2015) Graphene aerogels decorated with α-FeOOH nanoparticles for efficient adsorption of arsenic from contaminated waters. ACS Appl Mater Interfaces 7(18):9758–9766. CrossRefGoogle Scholar
  33. 33.
    Han X, Wang Y, Cao X et al (2019) Adsorptive performance of ship-type nano-cage polyoxometalates for U (VI) in aqueous solution. Appl Surf Sci 484:1035–1040. CrossRefGoogle Scholar
  34. 34.
    Martín-Jimeno FJ, Suárez-García F, Paredes JI et al (2015) Activated carbon xerogels with a cellular morphology derived from hydrothermally carbonized glucose-graphene oxide hybrids and their performance towards CO2 and dye adsorption. Carbon 81:137–147. CrossRefGoogle Scholar
  35. 35.
    Liao S, Zhai T, Xia H (2016) Highly adsorptive graphene aerogel microspheres with center-diverging microchannel structures. J Mater Chem A 4(3):1068–1077. CrossRefGoogle Scholar
  36. 36.
    Kabiri S, Tran DNH, Altalhi T et al (2014) Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal. Carbon 80:523–533. CrossRefGoogle Scholar
  37. 37.
    Zhao L, Yu B, Xue F et al (2015) Facile hydrothermal preparation of recyclable S-doped graphene sponge for Cu2+ adsorption. J Hazard Mater 286:449–456. CrossRefGoogle Scholar
  38. 38.
    Han Z, Tang Z, Shen S et al (2014) Strengthening of graphene aerogels with tunable density and high adsorption capacity towards Pb2+. Sci Rep 4:5025. CrossRefGoogle Scholar
  39. 39.
    Ferrari AC (2007) Raman pectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57. CrossRefGoogle Scholar
  40. 40.
    Dresselhaus MS, Jorio A, Hofmann M et al (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758. CrossRefGoogle Scholar
  41. 41.
    Cuesta A, Dhamelincourt P, Laureyns J et al (1994) Raman microprobe studies on carbon materials. Carbon 32(8):1523–1532. CrossRefGoogle Scholar
  42. 42.
    Kang Y, Obaid M, Jang J et al (2018) Novel sulfonated graphene oxide incorporated polysulfone nanocomposite membranes for enhanced-performance in ultrafiltration process. Chemosphere 207:581–589. CrossRefGoogle Scholar
  43. 43.
    Zhao Y, Tang K, Ruan H et al (2017) Sulfonated reduced graphene oxide modification layers to improve monovalent anions selectivity and controllable resistance of anion exchange membrane. J Membr Sci 536:167–175. CrossRefGoogle Scholar
  44. 44.
    Jin Y, Zhao Y, Liu H et al (2018) A durable and antifouling monovalent selective anion exchange membrane modified by polydopamine and sulfonated reduced graphene oxide. Sep Purif Technol 207:116–123. CrossRefGoogle Scholar
  45. 45.
    Ai YJ, Liu Y, Lan WY et al (2018) The effect of pH on the U (VI) sorption on graphene oxide (GO): a theoretical study. Chem Eng J 343:460–466. CrossRefGoogle Scholar
  46. 46.
    Camacho LM, Deng S, Parra RR (2010) Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration. J Hazard Mater 175(1–3):393–398. CrossRefGoogle Scholar
  47. 47.
    Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276(1):47–52. CrossRefGoogle Scholar
  48. 48.
    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. CrossRefGoogle Scholar
  49. 49.
    Wu FC, Tseng RL, Juang RS (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153(1–3):1–8. Google Scholar
  50. 50.
    Fu J, Chen Z, Wang M et al (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61. CrossRefGoogle Scholar
  51. 51.
    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. CrossRefGoogle Scholar
  52. 52.
    Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57(385471):1100–1107Google Scholar
  53. 53.
    Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10. CrossRefGoogle Scholar
  54. 54.
    Caccin M, Giacobbo F, Da Ros M et al (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297(1):9–18. CrossRefGoogle Scholar
  55. 55.
    Fasfous II, Dawoud JN (2012) Uranium (VI) sorption by multiwalled carbon nanotubes from aqueous solution. Appl Surf Sci 259:433–440. CrossRefGoogle Scholar
  56. 56.
    Kütahyalı C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396(2–3):251–256. CrossRefGoogle Scholar
  57. 57.
    Shao L, Wang X, Ren Y et al (2016) Facile fabrication of magnetic cucurbit [6] uril/graphene oxide composite and application for uranium removal. Chem Eng J 286:311–319. CrossRefGoogle Scholar
  58. 58.
    Song WC, Shao DD, Lu SS et al (2014) Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Sci China Chem 57(9):1291–1299. CrossRefGoogle Scholar
  59. 59.
    Wang G, Liu J, Wang X et al (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168(2–3):1053–1058. CrossRefGoogle Scholar
  60. 60.
    Wang G, Wang X, Chai X et al (2010) Adsorption of uranium (VI) from aqueous solution on calcined and acid-activated kaolin. Appl Clay Sci 47(3–4):448–451. CrossRefGoogle Scholar
  61. 61.
    Zhang Z, Liu Y, Cao X et al (2013) Sorption study of uranium on carbon spheres hydrothermal synthesized with glucose from aqueous solution. J Radioanal Nucl Chem 295(3):1775–1782. CrossRefGoogle Scholar
  62. 62.
    Wigner EP (1932) On the quantum correction for thermodynamic equilibrium. Phys Rev 40(40):749–759. CrossRefGoogle Scholar
  63. 63.
    Rouquerol J, Rouquerol F, Llewellyn P et al (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, CambridgeGoogle Scholar
  64. 64.
    Ilton ES, Du Y, Stubbs JE et al (2017) Quantifying small changes in uranium oxidation states using XPS of a shallow core level. Phys Chem Chem Phys 19(45):30473–30480. CrossRefGoogle Scholar
  65. 65.
    Xie Y, Helvenston EM, Shuller-Nickles LC et al (2016) Surface complexation modeling of Eu(III) and U (VI) interactions with graphene oxide. Environ Sci Technol 50(4):1821–1827. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Nuclear Resources and EnvironmentEast China University of TechnologyNanchangPeople’s Republic of China
  2. 2.MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and EngineeringNorth China Electric Power UniversityBeijingPeople’s Republic of China

Personalised recommendations